【题目】如图1,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°,以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.
(1)写出点E的纵坐标.
(2)求证:BD=OE;
(3)如图2,连接DE交AB于F.求证:F为DE的中点.
![]()
参考答案:
【答案】(1)点E的纵坐标为2;(2)见解析;(3)见解析.
【解析】
(1)直接运用直角三角形30°角的性质和等边三角形的性质可得∠OAE=90°,AE=2;
(2)连接OD,易证△ADO为等边三角形,再证△ABD≌△AEO即可.
(3)作EH⊥AB于H,先证△ABO≌△AEH,得AO=EH,再证△AFD≌△HFE即可.
(1)解:∵点B的坐标为(0,1),
∴OB=1,
∵∠BAO=30°,
Rt△ABO中,AB=2OB=2,
∵△ABE是等边三角形,
∴∠BAE=60°,AE=AB=2,
∴∠OAE=30°+60°=90°,
∴点E的纵坐标为2;
故答案为:2;
(2)证明:连接OD,如图1,
![]()
∵△ABE是等边三角形,
∴AB=BE,∠EAB=60°,
∵DA⊥BA,
∴∠DAB=90°,
∵∠BAO=30°,
∴∠DAO=90°﹣30°=60°,
∴∠OAE=∠DAB,
∵MN垂直平分OA,
∴OD=DA,
∴△AOD是等边三角形,
∴DA=OA,
在△ABD和△AEO中,
∵
,
∴△ABD≌△AEO(SAS),
∴BD=OE;
(3)证明:如图2,作EH⊥AB于H,
∴∠EHA=∠DAF=90°,
∵AE=BE,
∴AH=
AB,
∵∠AOB=90°,∠BAO=30°,
∴OB=
AB,
∴AH=BO,
∴Rt△AEH≌Rt△BAO(HL),
∴EH=AO=AD,
∵∠EHF=∠DAF=90°,∠EFH=∠DFA,
∴△HFE≌△AFD(AAS),
∴EF=DF,
∴F为DE的中点.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AC∥DF,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他有没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.

以下是他的想法,请你填上根据.小华是这样想的:
因为CF和BE相交于点O,
根据 得出∠COB=∠EOF;
而O是CF的中点,那么CO=FO,又已知 EO=BO,
根据 得出△COB≌△FOE,
根据 得出BC=EF,
根据 得出∠BCO=∠F,
既然∠BCO=∠F,根据 出AB∥DF,
既然AB∥DF,根据 得出∠ACE和∠DEC互补.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分,设小亮出发x分后行走的路程为y米.图中的折线表示小亮在整个行走过程中y随x的变化关系.
(1)小亮行走的总路程是_________米,他途中休息了___________分;
(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度;
(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x、y的方程组
,给出下列结论:①
是方程组的解;②无论a取何值,x,y的值都不可能互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④x,y的都为自然数的解有4对.
其中正确的个数为( )
A. 4个 B. 3个 C. 2个 D. 1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,其对称轴为直线x=﹣1,给出下列结果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.
则正确的结论是( )
A.(1)(2)(3)(4)
B.(2)(4)(5)
C.(2)(3)(4)
D.(1)(4)(5) -
科目: 来源: 题型:
查看答案和解析>>【题目】为了创建国家卫生城市,需要购买甲、乙两种类型的分类垃圾桶替换原来的垃圾桶,
,
,
三个小区所购买的数量和总价如表所示.甲型垃圾桶数量(套)
乙型垃圾桶数量(套)
总价(元)












(1)问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元?
(2)求
,
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ABC=45
,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:①∠FCD=45
②AE=EC
③S△ABF:S△AFC=AD:FD
④若BF=2EC,则△FDC周长等于AB的长.
正确结论的序号是___________.

相关试题