【题目】如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3 .
(1) 如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)
(2) 如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;
(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.
![]()
参考答案:
【答案】(1)S1=S2+S3;(2)S1=S2+S3;(3)S1=S2+S3
【解析】
(1)根据勾股定理即可得到结论;(2)根据圆的面积公式及勾股定理得出S1、S2、S3之间的关系即可;(3)利用等边三角形的面积公式以及勾股定理即可得到结论.
(1)如图②,在Rt△ABC中,利用勾股定理得AB2=AC2+BC2,即S1=S2+S3.
(2)如图①,在Rt△ABC中,利用勾股定理得AB2=AC2+BC2,则
,故S1=S2+S3.
(3)如图③,以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,在Rt△ABC中,利用勾股定理得AB2=AC2+BC2,则
,故S1=S2+S3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:

(1)本次接收随机抽样调查的男生人数为人,扇形统计图中“良好”所对应的圆心角的度数为;
(2)补全条形统计图中“优秀”的空缺部分;
(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为( )

A.114°
B.123°
C.132°
D.147° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示.在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=( )

A. 58° B. 32° C. 36° D. 34°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是一张等腰直角三角形彩色纸,将斜边上的高线四等分,然后裁出三张宽度相等的长方形纸条,若恰好可以用这些纸条为一幅正方形美术作品镶边(纸条不重叠),则这张彩色纸的面积与镶嵌所得的作品(如图2)面积之比为( )

A.2:3
B.3:4
C.1:1
D.4:3 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.
(1)在图中标出点D,并画出该四边形的另两条边;
(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A1B1C1D1,并在对称轴AC上找出一点P,使PD+PD1的值最小.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?

相关试题