【题目】阅读下面计算
+
+
+…+
的过程,然后填空.
解:∵
=
(
-
),
=
(
-
),…,
=
(
-
),
∴
+
+
+…+![]()
=
(
-
)+
(
-
)+
(
-
)+…+
(
-
)
=
(
-
+
-
+
-
+…+
-
)
=
(
-
)
=
.
以上方法为裂项求和法,请参考以上做法完成:
(1)
+
=______;
(2)当
+
+
+…+x=
时,最后一项x=______.
参考答案:
【答案】(1)
;(2)
.
【解析】
(1)由
+
=
×(
-
)+
×(
-
)=
×(
-
+
-
)计算可得;
(2)设x=
,得
+
+
+…+
=
,裂项求和得出n的值,从而得出答案.
解:(1)
+![]()
=
×(
-
)+
×(
-
)
=
×(
-
+
-
)
=
×(
-
)
=
×![]()
=
,
故答案为:
;
(2)设x=
,
则
+
+
+…+
=
,
×(1-
+
-
+
-
+…+
-
)=
,
×(1-
)=
,
1-
=
,
=
,
则2n+1=13,
解得:n=6,
∴x=
,
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下
时刻
9:00
9:45
12:00
碑上的数
是一个两位数,数字之和是9
十位与个位数字与9:00时所看到的正好相反
比9:00时看到的两位数中间多了个0
9:00时看到的两位数是( )
A. 54 B. 45 C. 36 D. 27
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.

证明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定义)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠ (等量代换)
∴EF∥CD( )
∴∠AEF=∠ ( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°( )
∴CD⊥AB( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2 , 两条抛物线相交于点C.

(1)请直接写出抛物线y2的解析式;
(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;
(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:
(1)甲、乙两组工作一天,商店各应付多少钱?
(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用
较少?
(3)若装修完后,商店每天可赢利200元,现有三种方案:①甲组单独做;②乙组单独做;③甲、乙两组同时做.你认为哪一种施工方案更有利于商店?请你帮商店做出决策(可用(1)(2)问中的条件及结论).
-
科目: 来源: 题型:
查看答案和解析>>【题目】当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如,由图①,可得等式:(a+2b)(a+b)=a2+3ab+2b2.

(1)由图②,写出所得的等式;
(2)利用(1)中所得到的结论,解决下面的问题: 已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)如图③,琪琪用2 张A型纸片,3 张B型纸片,5 张C型纸片拼出一个长方形,那么该长方形较长的一条边长为多少.(直接写出答案)
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.

证明过程如下:
证明:过点E作EF∥AB,
∵AB∥DC,EF∥AB(辅助线的作法),
∴EF∥DC
∴∠C=∠CEF.
∵EF∥AB,∴∠B=∠BEF
∴∠B+∠C=∠CEF+∠BEF
即∠B+∠C=∠BEC.
(2)如果点E运动到图②所示的位置,其他条件不变,∠B,∠C,∠BEC又有什么关系?并证明你的结论;
(3)如图③,AB∥DC,∠C=120°,∠AEC=80°,则∠A= .(写出结论,不用写计算过程)。
相关试题