【题目】用适当方法解下列方程:
(1)(3x+1)2﹣9=0
(2)x2+4x﹣1=0
(3)3x2﹣2=4x
(4)(y+2)2=1+2y.
参考答案:
【答案】(1)x1=﹣
,x2=
.(2)x1=﹣2+
,x2=﹣2﹣
.(3)x1=
,x2=
,(4)此方程无解.
【解析】试题分析:(1)可以利用平方差公式进行因式分解求解,
(2)先求出a,b,c,再代入计算
判定方程的根的情况,然后利用求根公式求解,
(3)先将方程整理成一般式, 求出a,b,c,再代入计算
判定方程的根的情况,然后利用求根公式求解,
(4) 先将方程整理成一般式, 求出a,b,c,再代入计算
判定方程的根的情况,然后利用求根公式求解.
试题解析:(1)(3x+1)2﹣9=0,
(3x+1+3)(3x+1﹣3)=0,
3x+4=0,3x﹣2=0,
所以x1=
,x2=
,
(2)x2+4x﹣1=0,
因为b2﹣4ac=42﹣4×1×(﹣1)=20,
所以
,
所以
,
,
(3)3x2﹣2=4x,
3x2﹣4x﹣2=0,
因为b2﹣4ac=(﹣4)2﹣4×3×(﹣2)=40,
所以
,
所以
,
,
(4)(y+2)2=1+2y,
整理得:y2+2y+3=0,
∵b2﹣4ac=22﹣4×1×3=﹣8<0,
∴此方程无解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】【问题情境】
在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.

图① 图② 图③
证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)
【变式探究】
当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.
请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】
如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;

【迁移拓展】
在直角坐标系中.直线l1:y=
与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知(m-n)2=8,(m+n)2=4,则m2+n2=( )
A.32B.12C.6D.2
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程(x-3)(x-2)-p2=0.
(1)求证:无论p取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x1、x2,且满足x12+x22=3 x1x2,求实数p的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:
①A,B两城相距300千米;
②乙车比甲车晚出发1小时,却早到1小时;
③乙车出发后2.5小时追上甲车;
④当甲、乙两车相距50千米时,t=
或
.其中正确的结论有( )

A.1个 B.2个 C.3个 D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算3(22+1)(24+1)……(232+1)+1=___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,图中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:
①打电话时,小东和妈妈的距离为1400米;
②小东和妈妈相遇后,妈妈回家的速度为50m/min;
③小东打完电话后,经过27min到达学校;
④小东家离学校的距离为2900m.
其中正确的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个
相关试题