【题目】某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示. ![]()
(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是元,小张应得的工资总额是元,此时,小李种植水果亩,小李应得的报酬是元;
(2)当10<n≤30时,求z与n之间的函数关系式;
(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.
参考答案:
【答案】
(1)解:140;2800;10;1500
(2)解:当10<n≤30时,设z=kn+b(k≠0),
∵函数图象经过点(10,1500),(30,3900),
∴
,
解得
,
所以,z=120n+300(10<n≤30)
(3)解:当10<m≤30时,设y=km+b,
∵函数图象经过点(10,160),(30,120),
∴
,
解得
,
∴y=﹣2m+180,
∵m+n=30,
∴n=30﹣m,
∴①当10<m≤20时,10≤n<20,
w=m(﹣2m+180)+120n+300,
=m(﹣2m+180)+120(30﹣m)+300,
=﹣2m2+60m+3900,
②当20<m≤30时,0≤n<10,
w=m(﹣2m+180)+150n,
=m(﹣2m+180)+150(30﹣m),
=﹣2m2+30m+4500,
所以,w与m之间的函数关系式为w= ![]()
【解析】解:(1)由图可知,如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是
(160+120)=140元, 小张应得的工资总额是:140×20=2800元,
此时,小李种植水果:30﹣20=10亩,
小李应得的报酬是1500元;
故答案为:140;2800;10;1500;
(1)根据图象数据解答即可;(2)设z=kn+b(k≠0),然后利用待定系数法求一次函数解析式即可;(3)先求出20<m≤30时y与m的函数关系式,再分①10<m≤20时,10<n≤20;②20<m≤30时,0<n≤10两种情况,根据总费用等于两人的费用之和列式整理即可得解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为( )

A. 19.2° B. 8° C. 6° D. 3°
-
科目: 来源: 题型:
查看答案和解析>>【题目】一节数学课后,老师布置了一道课后练习题:
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.
(1)理清思路完成解答
本题证明的思路可用下列框图表示:
根据上述思路,请你完整地书写本题的证明过程.
(2)若PB平分∠ABO,其余条件不变.求证:AP=CD.
(3)知识迁移,探索新知
若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.

(1)求该抛物线的函数解析式;
(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.
①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;
②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图:长方形ABCD中,AD=10,AB=4,点Q是BC的中点,点P在AD边上运动,当△BPQ是等腰三角形时,AP的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.

(1)若AE=CF; ①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求APAF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,
(1)求证:△ABC≌△EDF;
(2)当∠CHD=120°,猜想△HDB的形状,并说明理由.

相关试题