【题目】如图,DO平分∠AOC,OE平分∠BOC,若OA⊥OB,
(1)当∠BOC=30°,∠DOE=_______________; 当∠BOC=60°,∠DOE=_______________;
(2)通过上面的计算,猜想∠DOE的度数与∠AOB有什么关系,并说明理由.
![]()
参考答案:
【答案】 (1)45°, 45°;(2)∠DOE=
∠AOB
【解析】试题分析:(1)先求出∠AOC,然后根据角平分线的定义求出∠COD和∠COE,最后根据∠DOE=∠COD-∠COE进行计算即可;
(2)设∠AOB=α,∠BOC=β,仿照(1)中的求出进行计算即可.
试题解析:
(1)①∵OA⊥OB,∠BOC=30°,
∴∠AOC=90°+30°=120°,
∵OD平分∠AOC,OE平分∠BOC,
∴∠COD=60°,∠COE=15°,
∴∠DOE=∠COD-∠COE=60°-15°=45°.
②∵OA⊥OB,∠BOC=60°,
∴∠AOC=90°+60°=150°,
∵OD平分∠AOC,OE平分∠BOC,
∴∠COD=75°,∠COE=30°,
∴∠DOE=∠COD-∠COE=75°-30°=45°.
(2)∠DOE=
∠AOB.理由如下:
设∠AOB=α,∠BOC=β,
∵OD平分∠AOC,OE平分∠BOC,
∴∠COD=
(α+β),∠COE=
β,
∴∠DOE=∠COD-∠COE=
(α+β-β)=
α=
∠AOB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形网格中,△TAB顶点坐标分别为T(1,1)、A(2,3)、B(4,2).

(1)以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;
(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离,有关他这次探究活动的描述错误的是( )

A.MN∥AB
B.AB=24m
C.△CMN∽△CAB
D.△CMN与四边形ABMN的面积之比为1:2 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠1=42°13′,则∠1的余角是_____,补角是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将△ABC向右平移4个单位长度,再向下平移5个单位长度,
(1)在图上画出对应的三角形A1B1C1;
(2)写出点A1、B1、C1的坐标.
(3)求出△A1B1C1的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把l、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的正方形数”都可以看作两个相邻“三角形数”之和.下列等式中。符合这一规律的是( )

A. 15=4+11 B. 25=9+16
C. 49=21+28 D. 61=25+36
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是( )

A.120°
B.150°
C.135°
D.140°
相关试题