【题目】A、B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中
表示两人离A地的距离S(km)与时间t(h)的关系,结合图像回答下列问题:
(1)表示乙离开A地的距离与时间关系的图像是________(填
);
甲的速度是__________km/h;乙的速度是________km/h。
(2)甲出发后多少时间两人恰好相距5km?
![]()
参考答案:
【答案】
【解析】
试题分析:(1)乙离开A地的距离越来越远,图像是
; 甲的速度60÷2=30;乙的速度60÷(3.5-0.5)=20;
(2)分类讨论:①相遇前:
得
;②相遇后:由
得
.
试题解析:(1)
; 30; 20;
(2)由图可求出
,![]()
由
得
;由
得![]()
答:甲出发后1.3h或者1.5h时,甲乙相距5km。
-
科目: 来源: 题型:
查看答案和解析>>【题目】为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:

(1)本次接受随机抽样调查的学生人数为 人,图①中的m的值为 ,图①中“38号”所在的扇形的圆心角度数为 ;
(2)本次调查获取的样本数据的众数是 ,中位数是 ;
(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题探究
(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.
(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;
问题解决
(3)如图③,AC为边长为2
的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.

(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;
(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);
(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F.
求证:①E、F是线段BD的勾股分割点;
②△AMN的面积是△AEF面积的两倍.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,抛物线 y=
x2﹣
x﹣
与x轴交于A、B、两点(点A在点B的左侧),与y轴交于点C.(1)判断△ABC形状,并说明理由.
(2)在抛物线第四象限上有一点,它关于x轴的对称点记为点P,点M是直线BC上的一动点,当△PBC的面积最大时,求PM+
MC的最小值;(3)如图2,点K为抛物线的顶点,点D在抛物线对称轴上且纵坐标为
,对称轴右侧的抛物线上有一动点E,过点E作EH∥CK,交对称轴于点H,延长HE至点F,使得EF=
,在平面内找一点Q,使得以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线 是对称轴,请问是否存在这样的点Q,若存在请直接写出点E的横坐标,若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:
(1)起点A与终点B之间相距多远?
(2)哪支龙舟队先出发?哪支龙舟队先到达终点?
(3)分别求甲、乙两支龙舟队的y与x函数关系式;
(4)甲龙舟队出发多长时间时两支龙舟队相距200米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列横线上用含有
,
的代数式表示相应图形的面积.(1)①________;②__________;③__________;④_________________.
(2)通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表示:________________________________________.
(3)利用(2)的结论计算1972+2×197×3+32的值.( 注意不利用以上结论不得分)

相关试题