【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.
(1)求证:△ABC≌△EAF;
(2)试判断四边形EFDA的形状,并证明你的结论.
![]()
参考答案:
【答案】(1)证明见解析(2)四边形EFDA是平行四边形
【解析】试题分析:(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因为△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF;
(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.
试题解析:(1)∵Rt△ABC中,∠BAC=30°,
∴AB=2BC,
又∵△ABE是等边三角形,EF⊥AB,
∴AB=2AF
∴AF=BC,
在Rt△AFE和Rt△BCA中,
,
∴△AFE≌△BCA(HL),
∴AC=EF;
(2)∵△ACD是等边三角形,
∴∠DAC=60°,AC=AD,
∴∠DAB=∠DAC+∠BAC=90°
又∵EF⊥AB,
∴EF∥AD,
∵AC=EF,AC=AD,
∴EF=AD,
∴四边形ADFE是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是( )
A. 先变长,后变短 B. 先变短,后变长
C. 方向改变,长短不变 D. 以上都不正确
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a+b=3,ab=﹣1.求代数式下列代数式的值
①a2+b2
②(a﹣b)2 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如果阳光斜射在地面上,一张矩形纸片在地面上的影子不可能是( )
A. 矩形 B. 线段 C. 平行四边形 D. 一个点
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,
且∠ABM=∠BAM,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】人往路灯下行走的影子变化情况是( )
A.长短长 B.短长短 C.长长短 D.短短长
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的一元二次方程x2-(k+3)x+2k+2=0.
(1)若k=0,求方程的解;
(2)求证:无论k取任何实数时,方程总有两个实数根.
相关试题