【题目】如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E. ![]()
(1)求证:PB为⊙O的切线;
(2)若tan∠ABE=
,求sin∠E.
参考答案:
【答案】
(1)证明:连接OA,
![]()
∵PA为⊙O的切线,
∴OA⊥PA
∴∠PAO=90°,
∵OA=OB,OP⊥AB于C,
∴BC=CA,PB=PA,
∴△PAO≌△PBO,
∴∠PBO=∠PAO=90°,
∴PB为⊙O的切线;
(2)解:连接AD,
![]()
∵BD为直径,∠BAD=90°由(1)知∠BCO=90°
∴AD∥OP,
∴△ADE∽△POE,
∴
=
,
由AD∥OC得AD=2OC
∵tan∠ABE=
,
∴
= ![]()
设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,
得PC=2BC=4t,OP=5t,
∴
=
=
.
可设EA=2,EP=5,则PA=3,
∵PA=PB,
∴PB=3,
∴sin∠E=
=
.
【解析】(1)要证PB是⊙O的切线,只要连接OA,再证∠PBO=90°即可;(2)连接AD,证明△ADE∽△POE,得到
=
,设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,可求出sin∠E的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A1 , A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1 , A3B2∥A2B1 , A3B3∥A2B2 , A4B3∥A3B2 , ….若△A2B1B2和△A3B2B3的面积分别为1、9,则△A1007B1007A1008的面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】今年是第39个植树节,我们提出了“追求绿色时尚,走向绿色文明”的倡议.某校为积极响应这一倡议,立即在八、九年级开展征文活动,校团委对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.

(1)求扇形统计图中投稿3篇的班级个数所对应的扇形的圆心角的度数.
(2)求该校八、九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.
(3)在投稿篇数最多的4个班中,八、九年级各有两个班,校团委准备从这四个班中选出两个班参加全校的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD的对角线AC、BD相交于点O,分别作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.

(1)求证:△BOE≌△DOF;
(2)若OA=
BD,则四边形ABCD是什么特殊四边形?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(精确到0.1)(参考数据:
≈1.414,
≈1.132)
-
科目: 来源: 题型:
查看答案和解析>>【题目】由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.
(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)
月销售量(台)
400
200

250
x

(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0).将矩形OABC绕点O按顺时针方向旋转135°,得到矩形EFGH(点E与O重合).

(1)若GH交y轴于点M,则∠FOM=°,OM=;
(2)将矩形EFGH沿y轴向上平移t个单位.
①直线GH与x轴交于点D,若AD∥BO,求t的值;
②若矩形EFGH与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤4
﹣2时,S与t之间的函数关系式.
相关试题