【题目】某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.
![]()
(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个;
(2)求出甲厂的印刷费y甲与证书数量x的函数关系式,并求出其证书印刷单价;
(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?
参考答案:
【答案】(1)1;1.5(2)y=0.5x+1(3)选择乙厂节省费用,节省费用500元
【解析】试题分析:(1)根据纵轴图象判断即可,用2到6千个时的费用除以证件个数计算即可得解;(2)设甲厂的印刷费y甲与证书数量x的函数关系式为y=kx+b,利用待定系数法解答即可;(3)用待定系数法求出乙厂x>2时的函数解析式,再求出x=8时的函数值,再求出甲厂印制1个的费用,然后求出8千个的费用,比较即可得解.
试题解析:(1)(1)由图可知,甲厂的制版费为1千元; 当x≤2(千个)时,乙厂证书印刷单价是3÷2=1.5元/个;
故答案为:1;1.5;
(2)解:设甲厂的印刷费y甲与证书数量x的函数关系式为y=kx+b, 可得:
,
解得:
,
所以甲厂的印刷费y甲与证书数量x的函数关系式为:y=0.5x+1
(3)解:设乙厂x>2时的函数解析式为y=k2x+b2 , 则
,
解得
,
∴y=0.25x+2.5,
x=8时,y=0.25×8+2.5=4.5千元,
甲厂印制1个证件的费用为:(4﹣1)÷6=0.5元,
印制8千个的费用为0.5×8+1=4+1=5千元,
5﹣4.5=0.5千元=500元,
所以,选择乙厂节省费用,节省费用500元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角三角形ABC中,∠C=90°,点O为AB上的一点,以点O为圆心,OA为半径的圆弧与BC相切于点D,交AC于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)已知AE=2,DC=
,求圆弧的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间有一定的数量关系,请你写出∠OEP与∠ODP所有可能的数量关系是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数的图象经过原点及点(
,
),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.
(1)求k的值;
(2)在(1)的条件下,已知线段AB=6cm,点C是直线AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】求出符合条件的二次函数解析式:
(1)二次函数图象经过点(﹣1,0),(1,2),(0,3);
(2)二次函数图象的顶点坐标为(﹣3,6),且经过点(﹣2,10);
(3)二次函数图象与x轴的交点坐标为(﹣1,0),(3,0),与y轴交点的纵坐标为9.
-
科目: 来源: 题型:
查看答案和解析>>【题目】直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.
(1)在图1中,若∠BCE=40°,求∠ACF的度数;
(2)在图1中,若∠BCE=α,直接写出∠ACF的度数(用含α的式子表示);
(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,探究:写出∠ACF与∠BCE的度数之间的关系,并说明理由.

相关试题