【题目】已知二次函数的图象经过原点及点(
,
),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为 .
参考答案:
【答案】y=-
x2+
x;y=x2+x.
【解析】
试题分析:设二次函数的解析式为y=ax2+bx+c(a≠0),由图象与x轴的另一交点到原点的距离为1可得到抛物线与x轴的另一交点坐标为(1,0)或(-1,0),然后分别把(0,0)、(1,0)、(-
,-
)或(0,0)、(-1,0)、(-
,-
)代入解析式中得到两个方程组,解方程组即可确定解析式.
试题解析:设二次函数的解析式为y=ax2+bx+c(a≠0),
当图象与x轴的另一交点坐标为(1,0)时,
把(0,0)、(1,0)、(-
,-
)代入得
,
解方程组得
,
则二次函数的解析式为y=-
x2+
x;
当图象与x轴的另一交点坐标为(-1,0)时,得
解方程组得
,
则二次函数的解析式为y=x2+x.
所以该二次函数解析式为: y=-
x2+
x;y=x2+x.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面解答过程,并填空或填理由.
已知如下图,点E、F分别是AB和CD上的点,DE、AF分别交BC于点G、H,∠A=∠D,∠1=∠2.
试说明:∠B=∠C.
解:∵∠1=∠2(已知)
∠2=∠3(___________)
∴∠3=∠1(等量代换)
∴AF∥DE(___________)
∴∠4=∠D(___________)
又∵∠A=∠D(已知)
∴∠A=∠4(等量代换)
∴AB∥CD(___________)
∴∠B=∠C(___________).

-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角三角形ABC中,∠C=90°,点O为AB上的一点,以点O为圆心,OA为半径的圆弧与BC相切于点D,交AC于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)已知AE=2,DC=
,求圆弧的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间有一定的数量关系,请你写出∠OEP与∠ODP所有可能的数量关系是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.

(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个;
(2)求出甲厂的印刷费y甲与证书数量x的函数关系式,并求出其证书印刷单价;
(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.
(1)求k的值;
(2)在(1)的条件下,已知线段AB=6cm,点C是直线AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】求出符合条件的二次函数解析式:
(1)二次函数图象经过点(﹣1,0),(1,2),(0,3);
(2)二次函数图象的顶点坐标为(﹣3,6),且经过点(﹣2,10);
(3)二次函数图象与x轴的交点坐标为(﹣1,0),(3,0),与y轴交点的纵坐标为9.
相关试题