【题目】如图,在
中,
,
,D是AC的中点,过点A作直线
,过点D的直线EF交BC的延长线于点E,交直线l于点F,连接AE、CF.
![]()
(1)求证:①
≌
;②
;
(2)若
,试判断四边形AFCE是什么特殊四边形,并证明你的结论;
(3)若
,探索:是否存在这样的
能使四边形AFCE成为正方形?若能,求出满足条件时的
的度数;若不能,请说明理由.
参考答案:
【答案】(1)①证明见解析;②证明见解析;(2)四边形AFCE是矩形,证明见解析;(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形,证明见解析.
【解析】
(1)①根据中点和平行即可找出条件证明全等.
②由全等的性质可以证明出四边形AFCE是平行四边形,即可得到AE=FC.
(2)根据
和
可证明出△DCE为等边三角形,进而得到AC=EF即可证明出四边形AFCE是矩形.
(3)根据四边形AFCE是平行四边形,且EF⊥AC,得到四边形AFCE是菱形.由AC=BC,证出△DCE是等腰直角三角形即可得到AC=EF,进而证明出菱形AFCE是正方形.所以存在这样的
.
(1)①
∵AF∥BE,∴∠FAD=∠ECD,∠AFD=∠CED.
∵AD=CD,∴△ADF≌△CDE.
②由△ADF≌△CDE,∴AF=CE.
∵AF∥BE,∴四边形AFCE是平行四边形,∴AE=FC.
(2)四边形AFCE是矩形.
∵四边形AFCE是平行四边形,∴AD=DC,ED=DF.
∵AC=BC,∴∠BAC=∠B=30°,∴∠ACE=60°.
∵∠CDE=2∠B=60°,∴△DCE为等边三角形,∴CD=ED,∴AC=EF,∴四边形AFCE是矩形.
(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.
∵四边形AFCE是平行四边形,且EF⊥AC,∴四边形AFCE是菱形.
∵AC=BC,∴∠BAC=∠B=22.5°,∴∠DCE=2∠B=45°,∴△DCE是等腰直角三角形,即DC=DE,∴AC=EF,∴菱形AFCE是正方形.
即当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知A、B两地相距4800米,甲从A地出发步行到B地,20分钟后乙从B地出发骑自行车到A地,设甲步行的时间为x分钟,甲、乙两人离A地的距离分别为
米、
米,
、
与x的函数关系图象如图所示,根据图象解答下列问题:
(1)直接写出y
、y
与x的函数关系式,并写出自变量x的取值范围;(2)求甲出发后多少分钟两人相遇,相遇时乙离A地多少米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
分别交x轴、y轴于A、B两点,直线BC与x轴交于点
,P是线段AB上的一个动点
点P与A、B不重合
.
(1)求直线BC所对应的的函数表达式;
(2)设动点P的横坐标为t,
的面积为S.①求出S与t的函数关系式,并写出自变量t的取值范围;
②在线段BC上存在点Q,使得四边形COPQ是平行四边形,求此时点Q的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE.其中正确的结论有( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】市教育局决定分别配发给一中8台电脑,二中10台电脑,但现在仅有12台,需
在商场购买6台. 从市教育局运一台电脑到一中、二中的运费分别是30元和50元,从商场
运一台电脑到一中、二中的运费分别是40元和80元. 要求总运费不超过840元,问有几
种调运方案?指出运费最低的方案。
-
科目: 来源: 题型:
查看答案和解析>>【题目】“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话。
⑴现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得每行的三个数、每列的三个数、斜对角的三个数之和都等于15.
⑵通过研究问题⑴,利用你发现的规律,将3,5,-7,1,7,-3,9,-5,-1
这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.

相关试题