【题目】如图,在菱形ABCD中,对角线AC与BD相交于O点,AB=5,AC=6,过D点作DE//AC交BC的延长线于E点
(1)求△BDE的周长
(2)点P为线段BC上的点,连接PO并延长交AD于点Q,求证:BP=DQ
![]()
参考答案:
【答案】(1)24;(2)证明见解析.
【解析】(1)因为菱形的对角线互相垂直及互相平分就可以在Rt△AOB中利用勾股定理求出OB,然后利用平行四边形的判定及性质就可以求出△BDE的周长;
(2)容易证明△BOP≌△DOQ,再利用它们对应边相等就可以了.
(1)解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD=5,AC⊥BD,OB=OD,OA=OC=3,
∴OB=
=4,BD=2OB=8,
∵AD∥CE,AC∥DE,
∴四边形ACED是平行四边形,
∴CE=AD=BC=5,DE=AC=6,
∴△BDE的周长是:BD+BC+CE+DE=8+10+6=24.
(2)证明:∵四边形ABCD是菱形,
∴AD∥BC,
∴∠QDO=∠PBO,
∵在△DOQ和△BOP中
,
∴△DOQ≌△BOP(ASA),
∴BP=DQ.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,O是对角线的交点,AF平分
BAC,DH
AF于点H,交AC于G,DH延长线交AB于点E,求证:BE=2OG.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( )

A.70°
B.35°
C.40°
D.50° -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于
的方程x2-(2k+1)x+4k-2=0(1)求证:不论k取何值,这个方程总有实数根
(2)若等腰△ABC一边长a=4,另两边长b,c恰好是这个方程的两根,求△ABC的周长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒4个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒4个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒).
(1)求t=1时点P表示的有理数;
(2)求点P与点B重合时的t值;
(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);
(4)当点P表示的有理数与原点的距离是2个单位长度时,请求出所有满足条件的t值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】《九章算术》“勾股”章的问题::“今有二人同所立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会.问甲、乙各行几何?”大意是说:如图,甲乙二人从A处同时出发,甲的速度与乙的速度之比为7:3,乙一直向东走,甲先向南走十步到达C处,后沿北偏东某方向走了一段距离后与乙在B处相遇,这时,甲乙各走了多远?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知小华家、小夏家、小红家及学校在同一条大路旁,一天,他们放学后从学校出发,先向南行1000m到达小华家A处,继续向北行3000m到达小红B家处,然后向南行6000m到小夏家C处.
(1)以学校以原点,以向南方向为正方向,用1个单位长度表示1000m,请你在数轴上表示出小华家、小夏家、小红家的位置;
(2)小红家在学校什么位置?离学校有多远?

相关试题