【题目】综合题
(1)【问题情境】
徐老师给爱好学习的小敏和小捷提出这样一个问题:
如图1,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AB+BD=AC![]()
小敏的证明思路是:在AC上截取AE=AB,连接DE.(如图2)…![]()
小捷的证明思路是:延长CB至点E,使BE=AB,连接AE. 可以证得:AE=DE(如图3)…
请你任意选择一种思路继续完成下一步的证明.![]()
(2)【变式探究】
“AD是∠BAC的平分线”改成“AD是BC边上的高”,其它条件不变.(如图4),AB+BD=AC成立吗?若成立,请证明;若不成立,写出你的正确结论,并说明理由.![]()
(3)【迁移拓展】
△ABC中,∠B=2∠C. 求证:AC2=AB2+ABBC. (如图5)![]()
参考答案:
【答案】
(1)解:小敏的证明思路是:如图2,在AC上截取AE=AB,连接DE.(如图2)
![]()
∵AD是∠BAC的平分线,
∴∠BAD=∠EAD.
在△ABD和△AED中,
,
∴△ABD≌△AED(SAS),
∴BD=DE,∠ABD=∠AED
∵∠AED=∠EDC+∠C,∠B=2∠C,
∴∠EDC=∠C,
∴DE=EC,
即AB+BD=AC;
小捷的证明思路是:如图3,延长CB至点E,使BE=AB,连接AE.
![]()
∴∠E=∠BAE.
∵∠ABC=∠E+∠BAE,
∴∠ABC=2∠E.
∵∠ABC=2∠C,
∴∠E=∠C,
∴△AEC是等腰三角形.
∵AD是∠BAC的平分线,
∴∠BAD=∠DAC.
∵∠ADE=∠DAC+∠C,∠DAE=∠BAD+∠BAE
∴∠ADE=∠DAE,
∴EA=ED=AC,
∴AB+BD=AC
(2)解:AB+BD=AC不成立 正确结论:AB+BD=CD
理由:如图4,在CD上截取DE=DB,连结AE,
![]()
∵AD⊥BC,
∴AD是BE的中垂线,
∴AE=AB,
∴∠B=∠AED.
∵∠AED=∠C+∠CAE,且∠B=2∠C,
∴∠C=∠CAE,
∴AE=EC.
即AB+BD=CD
(3)解:证明:如图5,过点A作AD⊥BC于D.
![]()
由勾股定理得:AB2=BD2+AD2,AC2=CD2+AD2,
∴AC2﹣AB2=CD2﹣BD2=(CD+BD)(CD﹣BD)=BC(CD﹣BD)
∵AB+BD=CD,
∴CD﹣BD=AB,
∴AC2﹣AB2=BC(CD﹣BD)=BCAB,
即AC2=AB2+ABBC
【解析】【问题情境】小敏的证明思路是:在AC上截取AE=AB,由角平分线的性质就可以得出∠DAB=∠DAE,再证明△ADB≌ADE就可以得出结论;小捷的证明思路是:延长CB至点E,使BE=AB,连接AE.就可以得出∠E=∠C,就有AE=AC,进而得出AE=ED即可;
【变式探究】CD上截取DE=DB,连结AE,由AD⊥BC就可以得出AE=AB,∠AED=∠B,由∠AED=∠C+∠CAE就有∠C=∠CAE得出AE=EC,进而得出结论;
【迁移拓展】过点A作AD⊥BC于D.由勾股定理得:AB2=BD2+AD2,AC2=CD2+AD2,AC2-AB2=CD2-BD2=BC(CD-BD),由(2)的结论就可以得出AC2-AB2=BC(CD-BD)=BCAB即可.
【考点精析】解答此题的关键在于理解等腰直角三角形的相关知识,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算正确的是( )
A.4a2﹣2a2=2
B.3a+a=3a2
C.4a6÷2a3=2a2
D.﹣2aa=﹣2a2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=90°,直线EF分别交两直角边AB、BC与E、F两点,且EF∥AC,P是斜边AC的中点,连接PE,PF,且AB=
,BC=
.(1)当E、F均为两直角边的中点时,求证:四边形EPFB是矩形,并求出此时EF的长;
(2)设EF的长度为x(x>0),当∠EPF=∠A时,用含x的代数式表示EP的长;
(3)设△PEF的面积为S,则当EF为多少时,S有最大值,并求出该最大值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行,乙车车发2h后休息,与甲车相遇后,继续行驶,设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲 , y乙与x之间的函数图象如图所示,结合图象解答下列问题:

(1)求:y甲与x的函数关系式,并写出自变量x的取值范围;
(2)乙车休息了h;
(3)当两车相距80km时,直接写出x的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是( )

A.60°
B.45°
C.30°
D.75° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC=26,BC=20,AD是BC边上的中线,AD=24,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】一滴水的质量约0.000053 kg,用科学记数法表示这个数为_____kg.
相关试题