【题目】如图
,
平分
,
平分
,
和
交于点
,
为
的中点,连结
.
![]()
(
)找出图中所有的等腰三角形.
(
)若
,
,求
的长.
参考答案:
【答案】(
)所有的等腰三角形有:
,
,
,
;(
)
.
【解析】试题分析:
(1)由AB∥CD,AC平分∠BAD可得∠C=∠BAC=∠DAC,从而可得AD=CD,得到△ADC是等腰三角形;同理可△ABD是等腰三角形;证∠AED=90°,结合点F是AD中点,可得EF=FD=FA,从而可得△DEF和△AEF是等腰三角形;即图中共有4个等腰三角形;
(2)由∠AED=90°,AE=4,DE=3,由勾股定理可得AD=5,结合点F是AD中点,可得EF=
AD=2.5.
试题解析:
(
)图中等腰三角形共有4个,分别是:
,
,
,
.理由如下:
∵AB∥CD,AC平分∠BAD,
∴∠C=∠BAC,∠BAC=∠DAC,
∴∠C=∠DAC,
∴AD=CD,
∴△ADC是等腰三角形;
同理可得:△ABD是等腰三角形;
∵BD平分∠ADC,AD=CD,
∴BD⊥AC,
∴∠AED=90°,
又∵点F是AD的中点,
∴EF=AF=DF,
∴△AEF和△DEF是等腰三角形;
综上所述,图中共有四个等腰三角形,分别是:△ADC、△ABD、△AEF和△DEF;
![]()
(
)∵∠AED=90°,AE=4,DE=3,
∴AD=
,
又∵点F是AD的中点,
∴EF=
AD=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题14分)如图,抛物线y=
x2+
x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,
)在抛物线上,直线AC与y轴交于点D.
(1)求c的值及直线AC的函数表达式;
(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.
①求证:△APM∽△AON;
②设点M的横坐标为m,求AN的长(用含m的代数式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题10分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.

(1)求证:BE=CE;
(2)若BD=2,BE=3,求AC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(9分)如图,某港口P位于东西方向的海岸线上“远航”号、“海天”号轮船同时离开港口,各自沿同定方向航行,“远航”号每小时航行16n mile,“海天”号每小时航行12n mile,它们离开港口一个半小时后分别位于点Q,R处,且相距30n mile
(1)求PQ,PR的长度;
(2)如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,正确的命题是( )
A.度数相等的弧是等弧
B.正多边形既是轴对称图形,又是中心对称图形
C.垂直于弦的直径平分弦
D.三角形的外心到三边的距离相等
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么粒子运动到点(3,0)时经过了________秒,粒子运动60秒后的坐标为_________________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A.“367人中有2人同月同日生”为必然事件
B.检测某批次灯泡的使用寿命,适宜用全面调查
C.可能性是1%的事件在一次试验中一定不会发生
D.数据3,5,4,1,﹣2的中位数是4
相关试题