【题目】如图,正方形网格中,小正方形的边长为1,△ABC的顶点在格点上.
(1)判断△ABC是否是直角三角形?并说明理由.
(2)求△ABC的面积.
![]()
参考答案:
【答案】(1)△ABC是直角三角形,理由详见解析;(2)13.
【解析】
(1)根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定其形状即可;(2)利用经过△ABC三个顶点的长方形的面积减去以点A、B、C为直角顶点的三个直角三角形的面积求解即可.
(1)△ABC是直角三角形,理由如下:
由勾股定理可得:AC2=32+22=13,BC2=82+12=65,AB2=62+42=52,
∴AB2+AC2=BC2,
∴△ABC是直角三角形;
(2)S△ABC=8×4﹣
×2×3﹣
×8×1﹣
×4×6=13.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,高CD和角平分线AE交于点F,EH⊥AB于点H,那么CF=EH吗?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图, △ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC
⑴求∠ECD的度数;
⑵若CE=5,求CB的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y (单位:个)与销售单价x(单位:元/个)之间的对应关系如图所示:

(1)y与x之间的函数关系是 .
(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(单位:元)与销售单价x (单位:元/个)之间的函数关系式;
(3)在(2)问的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣
x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ACB中,∠ACB=90°,D、E为斜边AB上的两点,且BD=BC,AE=AC,求∠DCE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点.
(1)若EF=3,BC=8,求△EFM的周长;
(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度数.

相关试题