【题目】在△ABC中∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是( ) ![]()
A.BC是△ABE的高
B.BE是△ABD的中线
C.BD是△EBC的角平分线
D.∠ABE=∠EBD=∠DBC
参考答案:
【答案】D
【解析】解:A、BC是△ABE的高,正确,不符合题意;
B、BE是△ABD的中线,正确,不符合题意;
C、BD是△EBC的角平分线,正确,不符合题意;
D、∵BD是△EBC的角平分线,
∴∠EBD=∠DBC,
∵BE是中线,
∴∠ABE≠∠EBD,
∴∠ABE=∠EBD=∠DBC不正确,符合题意.
故选D.
【考点精析】利用三角形的“三线”对题目进行判断即可得到答案,需要熟知1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,已知⊙O的半径为1,菱形ABCD的三个顶点A、B、D在⊙O上,且CD与⊙O相切.
(1)求证:BC与⊙O相切;
(2)求阴影部分面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若|a﹣3|+(b+4)2=0,则(a+b)2018的值是( )
A. 2018B. 1C. ﹣2018D. ﹣1
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”).
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解决问题时需要思考:是否解决过与其类似的问题.小明从问题1解题思路中获得启发从而解决了问题2.
问题1:如图①,在正方形ABCD中,E、F是BC、CD上两点,∠EAF=45°.
求证:∠AEF=∠AEB.
小明给出的思路为:延长EB到H,满足BH=DF,连接AH.请完善小明的证明过程.

问题2:如图②,在等腰直角△ABC中,∠ACB=90°,AC=BC=4,D为AB中点,E、F是AC、BC边上两点,∠EDF=45°.
(1)求点D到EF的距离.
(2)若AE=a,则S△DEF= (用含字母a的代数式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人周末从同一地点出发去某景点,因乙临时有事,甲坐地铁先出发,甲出发0.2小时后乙开汽车前往.设甲行驶的时间为x(h),甲、乙两人行驶的路程分别为y1(km)与y2(km).如图①是y1与y2关于x的函数图像.
(1)分别求线段OA与线段BC所表示的y1与y2关于x的函数表达式;
(2)当x为多少时,两人相距6 km?
(3)设两人相距S千米,在图②所给的直角坐标系中画出S关于x的函数图像.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x元,那么根据题意,所列方程正确的是( )
A.0.8(1+0.5)x=x+28
B.0.8(1+0.5)x=x﹣28
C.0.8(1+0.5x)=x﹣28
D.0.8(1+0.5x)=x+28
相关试题