【题目】某种品牌服装平均每天销售20件,每件盈利44元.销售过程中发现,在每件降价不超过10元的情况下,若每件降价1元,每天可多售5件.
(1)若每件降价2元,则每天售出 件,共盈利 元;
(2)如果销售这种品牌的服装每天要盈利2380元,求每件应降价多少元.
参考答案:
【答案】(1)30;1260;(2)10
【解析】
试题分析:(1)降价1元,可多售出5件,降价2元,可多售出10件,盈利的钱数=原来的盈利﹣降低的钱数;
(2)等量关系为:每件商品的盈利×可卖出商品的件数=2380,把相关数值代入计算得到合适的解即可.
试题解析:(1)20+2×5=30;30×(44-2)=1260;
(2)设:每件降价x元.由题意得:(44﹣x)(20+5x)=2380,解得
=30(舍去),
=10.
答:每件商品降价10元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ ABC中,AB=AC,∠ BAC=90°,直角∠ EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△ EPF是等腰直角三角形; ③2S四边形AEPF=S△ ABC; ④BE+CF=EF.当∠ EPF在△ ABC内绕顶点P旋转时(点E与A、B重合).上述结论中始终正确的有( )

A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】一元二次方程x2﹣4x = 0的根是( )
A.x1 =0,x2 =4B.x1 =0,x2 =﹣4C.x1 =x2 =2D.x1 =x2 =4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图△ADF和△BCE中,∠A=∠B,点D、E、F、C在同﹣直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF。

(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)
(2)选择(1)中你写出的一个命题,说明它正确的理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知:在△ABC中,AC=BC=4,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角∠PCB=α,斜边PN交AC于点D.
(1)当PN∥BC时,判断△ACP的形状,并说明理由;
(2)点P在滑动时,当AP长为多少时,△ADP与△BPC全等,为什么?
(3)点P在滑动时,△PCD的形状可以是等腰三角形吗?若可以,请求出夹角α的大小;若不可以,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?

(2)如图,若点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜想线段DE、DB、EC之间有何数量关系?
证明你的猜想。

-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y1=﹣
x﹣1与反比例函数y2=
的图象交于点A(﹣4,m).(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;
(2)求出反比例函数的解析式.
(3)求直线与双曲线的另一个交点坐标.

相关试题