【题目】已知:关于x的一元二次方程ax2﹣2(a﹣1)x+a﹣2=0(a>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1>x2).若y是关于a的函数,且y=ax2x1,求这个函数的表达式;
(3)将(2)中所得的函数的图象在直线a=2的左侧部分沿直线a=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象直接写出:当关于a的函数y=2a+b的图象与此图象有两个公共点时,b的取值范围是 .
![]()
参考答案:
【答案】(1)见解析;(2)y=a﹣3(a>0);(3)﹣11<b<﹣5
【解析】
(1)根据一元二次方程的根的判别式判断即可;
(2)先根据一元二次方程的求根公式得出x1,x2,即可得出函数函数关系式;
(3)画出新函数的图形和直线y=2a+b,利用图形和直线与y轴的交点坐标即可得出结论.
(1)证明:∵ax2﹣2(a﹣1)x+a﹣2=0(a>0)是关于x的一元二次方程,
∴△=[﹣2(a﹣1)]2﹣4a(a﹣2)=4>0,
∴方程ax2﹣2(a﹣1)x+a﹣2=0(a>0)有两个不相等的实数根.
(2)解:由求根公式,得x=
.
∴x=1或x=1﹣
.
∵a>0,x1>x2,
∴x1=1,x2=1﹣
,
∴y=ax2x1=a×(1﹣
)﹣1=a﹣3.
即函数的表达式y=a﹣3(a>0),
(3)解:如图,直线BD刚好和折线CBA只有一个公共点,再向下平移,就和这些CBA有两个公共点,
继续向下平移到直线CE的位置和直线CBA刚好有1个公共点,再向下平移和这些CBA也只有一个公共点,
由(2)知,函数的表达式y=a﹣3(a>0),
当a=2时,y=2﹣3=﹣1,
∴B(2,﹣1),
由折叠得,C(4,﹣3),
当函数y=2a+b的图象过点B时,
∴﹣1=2×2+b,
∴b=﹣5,
当函数y=2a+b的图象过点C时,
∴﹣3=2×4+b,
∴b=﹣11,
∴﹣11<b<﹣5.
故答案为:﹣11<b<﹣5.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的中线BD,CE交于点O,F,G分别是BO,CO的中点.
(1)填空:四边形DEFG是 四边形.
(2)若四边形DEFG是矩形,求证:AB=AC.
(3)若四边形DEFG是边长为2的正方形,试求△ABC的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,经过点A(6,0)的直线y=kx﹣3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.
(1)求点B的坐标;
(2)当△OPB是直角三角形时,求点P运动的时间;
(3)当BP平分△OAB的面积时,直线BP与y轴交于点D,求线段BD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】 “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为 ,中位数在第 组;
②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别
成绩x分
频数(人数)
第1组
50≤x<60
6
第2组
60≤x<70
8
第3组
70≤x<80
14
第4组
80≤x<90
a
第5组
90≤x<100
10

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A,连接OE并延长与⊙O相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=90°,反比例函数y=﹣
(x<0)的图象过点A(﹣1,a),反比例函数y=
(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;
(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=
于另一点C,求△OBC的面积.
相关试题