【题目】如图,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC延长线于F,且垂足为E,则下列结论:①AD=BF;②∠BAE=∠FBC;③S△ADB=S△ADC;④AC+CD=AB;⑤AD=2BE.其中正确的结论有______(填写序号)
![]()
参考答案:
【答案】:①②④⑤.
【解析】
证△ACD≌△BCF,推出AD=BF,CD=CF,证△AEB≌△AEF推出AB=AF,BE=EF,推出AD=BF=2BE,求出BD>CD,根据三角形面积求出△ACD的面积小于△ADB面积,由CD=CF,AB=AF,即可求出AC+CD=AB.
解:∵∠ACB=90°,BF⊥AE,
∴∠BCF=∠ACD=∠BEA=∠AEF=90°,
∵∠BDE=∠ADC,
∴由三角形内角和定理得:∠CAD=∠CBF,
在△ACD和△BCF中,
,
∴△ACD≌△BCF(ASA),
∴AD=BF,∴①正确;
∵AE平分∠BAC,
∴∠BAE=∠FAE,
∵∠CBF=∠FAE,
∴∠BAE=∠FBC,∴②正确;
过D作DQ⊥AB于Q,
则BD>DQ,
∵AE平分∠BAC,BC⊥AC,DQ⊥AB,
∴DC=DQ,
∴BD>CD,
∵△ADB的边BD上的高和△ABD的面积大于△ACD的面积,∴③错误;
∵BF⊥AE,
∴∠AEB=∠AEF=90°,
在△AEB和△AEF中,
,
∴△AEB≌△AEF(ASA),
∴BE=EF,
∴BF=2BE,
∵AD=BF,
∴AD=2BE,∴⑤正确;
∵△ACD≌△BCF,△AEB≌△AEF
∴CD=CF,AB=AF,
∴AB=AF=AC+CF=AC+CD,∴④正确;
故答案为:①②④⑤.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为

A. 3B. 4C. 5D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,∠BAC=110°,MP、NO分别垂直平分AB、AC.则∠PAO=___________;

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD内有一点F,FB与FC分别平分∠ABC和∠BCD,点E为矩形ABCD外一点,连接BE,CE.现添加下列条件:①EB∥CF,CE∥BF;②BE=CE,BE=BF;③BE∥CF,CE⊥BE;④BE=CE,CE∥BF,其中能判定四边形BECF是正方形的共有( )

A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,己如FG⊥AB,、CD⊥AB,垂足分别为G、D,∠1=∠2.
求证:∠CED+∠ACB=180°请将下面的证明过程补充完整.

证明:∵FG⊥AB,CD⊥AB(已知),
∴∠FGB=∠CDB=90°(垂直的定义)
∴GF∥CD(___________________________)
∵GF∥CD(已证)
∴∠2=∠BCD(___________________________)
又∵∠1=∠2(已知),
∴∠1=∠BCD(___________________________)
∴___________________________,(___________________________)
∴∠CED+∠ACB=180°(___________________________)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程(k-1)x2+2kx+2=0
(1)求证:无论k为何值,方程总有实数根.
(2)设x1,x2是该方程的两个根,记S=x1+x2-x1x2,S的值能为0吗?若能,求出此时k的值.若不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是一种广场三联漫步机,其侧面示意图如图2所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求点D到地面的高度是多少?

相关试题