【题目】如图,C为线段AB上一点,分别以AC,BC为边在AB的同侧作等边△HAC与等边△DCB,连接DH.
(1)如图1,当∠DHC=90°时,求
的值;
(2)在(1)的条件下,作点C关于直线DH的对称点E,连接AE,BE.求证:CE平分∠AEB.
(3)现将图1中的△DCB绕点C顺时针旋转一定角度α(0°<α<90°),如图2,点C关于直线DH的对称点为E,则(2)中的结论是否还成立,并证明.
![]()
参考答案:
【答案】(1)2;(2)见解析
【解析】试题分析:
(1)由已知易得∠DCH=60°,结合∠DHC=90°,可得∠CDH=30°,从而可得CD=2CH,结合AC=CH,BC=CD,即可得到
的比值;
(2)如图1,由点C和点E关于DH对称,易得EH=CH=AH,点E、H、C三点共线,从而可得∠AEC=∠EAH=
∠AHC=30°;由(1)可得BC=2CH=EC,从而可得∠BEC=∠EBC
∠ACE=30°;这样可得∠AEC=∠BEC,即可得到EC平分∠AEB的结论;
(3)如图2,由点C和点E关于DH对称,易得EH=CH=AH,由此可得点A、E、C三点都在以H为圆心,AH为半径的圆上,则由圆周角定理可得∠AEC=
∠AHC=30°;同理,由点C和点E关于DH对称,可得DE=DC=DB,由此可得点E、C、B都在以D为圆心,DC为半径的圆上,由此可得∠BEC=
∠BDC=30°,即可得到∠AEC=∠BEC,即可得到EC平分∠AEB的结论.
![]()
试题解析:
(1)∵△HAC与△DCB都是等边三角形,
∴∠ACH=∠DCB=60°,AC=HC,BC=CD,
∴∠HCD=180°﹣∠ACH﹣∠DCB=60°,
∵∠DHC=90°,
∴∠HDC=180°﹣∠DHC﹣∠HCD=30°,
∴CD=2CH,
∴BC=2AC,
∴
=2;
(2)如图1,由点C和点E关于DH对称可得:∠EHD=∠DHC=90°,EH=HC,
![]()
∴E、H、C三点共线,
∵AH=HC,
∴EH=AH,
∴∠AEC=∠EAH=
∠AHC=30°,
由(1)可得BC=2CH=EC,
∴∠BEC=
∠ACE=30°,
∴∠AEC=∠BEC,即CE平分∠AEB;
(3)结论仍然正确,理由如下:
如图2,由对称性可知:HC=HE,
![]()
又∵AH=HC,
∴HC=HA=HE,
∵A,C,E都在以H为圆心,HA为半径的圆上,
∴∠AEC=
∠AHC=30°,
同理可得,∠BEC=
∠BDC=30°,
∴∠AEC=∠BEC,
∴EC平分∠AEB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某课外小组的同学们在社会实践活动中调查了20户家庭莱月的用电量,如表所示则这20户家庭该月用电量的众数和中位数、平均数分别是( )

A. 180,160,164B. 160,180;164C. 160,160,164D. 180,180,164
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,如图,抛物线y=x2+bx+c与x轴交于点A和点B(4,0),与y轴交于点C(0,4).
(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方的动点,过点M作MN∥y轴交直线BC于点N求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校举行研学旅行活动,车上准备了7箱矿泉水,每箱的瓶数相同,到达目的地后,先从车上搬下3箱,发给每位同学1瓶矿泉水,有9位同学未领到.接着又从车上搬下4箱,继续分发,最后每位同学都有2瓶矿泉水,还剩下6瓶.问:有多少人参加此次研学旅行活动?每箱矿泉水有多少瓶?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )

A. 2 B.
C.
D. 2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).

(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.
相关试题