【题目】如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).
![]()
(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.
参考答案:
【答案】(1)y=-
-4x P1(-2, 4),P2(-2+2
,-4),P3(-2-2
,-4)
【解析】试题分析:(1)把点A原点的坐标代入函数解析式,利用待定系数法求二次函数解析式解答;
(2)根据三角形的面积公式求出点P到AO的距离,然后分点P在x轴的上方与下方两种情况解答即可.
试题解析:(1)由已知条件得
,
解得
,
所以,此二次函数的解析式为y=﹣x2﹣4x;
(2)∵点A的坐标为(﹣4,0),
∴AO=4,
设点P到x轴的距离为h,
则S△AOP=
×4h=8,
解得h=4,
①当点P在x轴上方时,﹣x2﹣4x=4,
解得x=﹣2,
所以,点P的坐标为(﹣2,4),
②当点P在x轴下方时,﹣x2﹣4x=﹣4,
解得x1=﹣2+2
,x2=﹣2﹣2
,
所以,点P的坐标为(﹣2+2
,﹣4)或(﹣2﹣2
,﹣4),
综上所述,点P的坐标是:(﹣2,4)、(﹣2+2
,﹣4)、(﹣2﹣2
,﹣4).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C为线段AB上一点,分别以AC,BC为边在AB的同侧作等边△HAC与等边△DCB,连接DH.
(1)如图1,当∠DHC=90°时,求
的值;(2)在(1)的条件下,作点C关于直线DH的对称点E,连接AE,BE.求证:CE平分∠AEB.
(3)现将图1中的△DCB绕点C顺时针旋转一定角度α(0°<α<90°),如图2,点C关于直线DH的对称点为E,则(2)中的结论是否还成立,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校举行研学旅行活动,车上准备了7箱矿泉水,每箱的瓶数相同,到达目的地后,先从车上搬下3箱,发给每位同学1瓶矿泉水,有9位同学未领到.接着又从车上搬下4箱,继续分发,最后每位同学都有2瓶矿泉水,还剩下6瓶.问:有多少人参加此次研学旅行活动?每箱矿泉水有多少瓶?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )

A. 2 B.
C.
D. 2
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明解不等式
的过程如图,请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:去分母,得3(1+x)-2(2x+1)≤1.①
去括号,得3+3x-4x+1≤1.②
移项,得3x-4x≤1-3-1.③
合并同类项,得-x≤-3.④
两边都除以-1,得x≤3.⑤
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC和△DBE中,BC=BE,还需再添加两个条件才能使△ABC≌△DBE,则不能添加的一组条件是( )

A. AB=DB,∠ A=∠ D B. DB=AB,AC=DE C. AC=DE,∠C=∠E D. ∠ C=∠ E,∠ A=∠ D
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是( )

A. 3 B. 4 C. 5 D. 6
相关试题