【题目】如图,在△ABC中,AD是BC边上的高,将△ABD沿AD折叠得到△AED,点E落在CD上,∠B=50°,∠C=30°.
(1)填空:∠BAD= 度;
(2)求∠CAE的度数.
![]()
参考答案:
【答案】(1)40;(2)20°
【解析】
(1)直接根据三角形内角和定理求出∠BAD的度数;
(2)先根据图形折叠的性质求出∠AED的度数,再由三角形外角的性质即可得出结论.
(1)∵AD是BC边上的高,∠B=50°,
∴∠BAD=180°-90°-50°=40°.
故答案为:40;
(2)∵△AED是由△ABD折叠得到,
∴∠AED=∠B=50°,
∵∠AED是△ACE的外角,
∴∠AED=∠CAE+∠C,
∴∠CAE=∠AED-∠C=50°-30°=20°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形ABCD的一个内角是60,将它绕对角线的交点O顺时针旋转90后得到菱形A′B′C′D′.旋转前后两菱形重叠部分多边形的周长为
,则菱形ABCD的边长为_________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“一带一路”国际合作高峰论坛期间,我国同30多个国家签署经贸合作协议.某工厂准备生产甲、乙两种商品共6万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于4200万元,则至少销管甲种商品多少万件?
-
科目: 来源: 题型:
查看答案和解析>>【题目】若
,则下列不等式中不一定成立的是( )A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为迎接安顺市文明城市创建工作,某校八年一班开展了“社会主义核心价值观、未成年人基本文明礼仪规范”的知识竞赛活动,成绩分为A、B、C、D四个等级,并将收集的数据绘制了两幅不完整的统计图.请你根据图中所给出的信息,解答下列各题:
(1)求八年一班共有多少人;

(2)补全折线统计图;
(3)在扇形统计图中等极为“D”的部分所占圆心角的度数为________;
(4)若等级A为优秀,求该班的优秀率.
【答案】(1)60;(2)补图见解析;(3)108°;(4)5%.
【解析】(1)用B等人数除以其所占的百分比即可得到总人数;
(2)用求得的总人数乘以C等所占的百分比即可得到C等的人数,总人数减去A、C等的人数即可求得D等的人数;
(3)用D等的人数除以总人数乘以360°即可得到答案;
(4)用A等的人数除以总人数乘以100%即可得到答案. 解答:
解:(1)30÷50%=60(人)
∴八年级一共有60人。
(2)等级为“C”的人数为60×15%=9(人).
等级为“D”的人数为603309=18(人).
补全折线统计图如下。

(3)等极为“D”的部分所占圆心角的度数为
×360°=108°,故答案为:108°.
(4)该班的优秀率
×100%=5%.∴该班的优秀率为5%.
点睛:本题考查统计相关知识.利用拆线图与扇形图得出相关信息是解题的关键.
【题型】解答题
【结束】
25【题目】已知抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点,直线L是抛物线的对称轴.

(1)求抛物线的函数关系式;
(2)求抛物线的顶点坐标;
(3)设P点是直线L上的一个动点,当△PAC的周长最小时,求点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是弧
上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是 
A. (sinα,sinα) B. (cosα,cosα) C. (cosα,sinα) D. (sinα,cosα)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E是矩形ABCD的边BC延长线上一点,连接AE,交CD于点F,G是AF的中点,再连接DG、DE,且DE=DG.
(1)求证:∠DEA=2∠AEB;
(2)若BC=2AB,求∠AED的度数。

相关试题