【题目】楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.
(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;
(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)
参考答案:
【答案】(1)y=
;(2)该月需售出10辆汽车.
【解析】
试题分析:(1)根据分段函数可以表示出当0<x≤5,5<x≤30时由销售数量与进价的关系就可以得出结论;
(2)由销售利润=销售价﹣进价,由(1)的解析式建立方程就可以求出结论.
解:(1)由题意,得
当0<x≤5时
y=30.
当5<x≤30时,
y=30﹣0.1(x﹣5)=﹣0.1x+30.5.
∴y=
;
(2)当0<x≤5时,
(32﹣30)×5=10<25,不符合题意,
当5<x≤30时,
[32﹣(﹣0.1x+30.5)]x=25,
解得:x1=﹣25(舍去),x2=10.
答:该月需售出10辆汽车.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两台机器共加工一批零件,在加工过程中两台机器均改变了一次工作效率.从工作开始到加工完这批零件两台机器恰好同时工作6小时.甲、乙两台机器各自加工的零件个数y(个)与加工时间x(时)之间的函数图象分别为折线OA﹣AB与折线OC﹣CD.如图所示.

(1)甲机器改变工作效率前每小时加工零件 个.
(2)求乙机器改变工作效率后y与x之间的函数关系式,并求出自变量x的取值范围.
(3)求这批零件的总个数.
(4)直接写出当甲、乙两台机器所加工零件数相差10个时,x的值为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的解题思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?请说明理由;


(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的解题过程,并在横线上补全推理过程或依据.
已知:如图, DE∥BC,DF、BE分别平分∠ADE、∠ABC.试说明∠FDE=∠DEB.

解:∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分别平分∠ADE、∠ABC (已知)
∴∠ADF=
∠ADE∠ABE=
∠ABC(角平分线定义)∴∠ADF=∠ABE( )
∴DF∥ .( )
∴∠FDE=∠DEB.( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:﹣10+(+6)-(-2)=______
-
科目: 来源: 题型:
查看答案和解析>>【题目】以下列各组线段为边,不能组成三角形的是( )
A. 2cm,3cm,4cm B. 1cm,2cm,3cm
C. 3cm,4cm,5cm D. 4cm,2cm,3cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】正多边形的一个外角等于40°,则这个多边形的边数是( )
A. 6 B. 9 C. 12 D. 15
相关试题