【题目】已知在平面直角坐标系中,有两定点
、
,
是反比例函数
图象上动点,当
为直角三角形时,点
坐标为________.
参考答案:
【答案】
或![]()
【解析】
分类讨论:当∠PBC=90°时,则P点的横坐标为2,根据反比例函数图象上点的坐标特征易得P点坐标为(2,1);当∠BPC=90°,设P(x,
),根据两点间的距离公式和勾股定理可得(x+2)2+(
)2+(x-2)2+(
)2=16,解得x=
或x=-
(舍去),然后计算当x=
时,y=
,所以此时P点坐标为(
,
).
当∠PBC=90°时,P点的横坐标为2,把x=2代入y=
得y=1,所以此时P点坐标为(2,1);
当∠BPC=90°,设P(x,
),PC2=(x+2)2+(
)2,PB2=(x-2)2+(
)2,
BC2=(2+2)2=16,
因为PC2+PB2=BC2,
所以(x+2)2+(
)2+(x-2)2+(
)2=16,
整理得x4-4x2+4=0,即(x2-2)2=0,
所以x=
或x=-
(舍去),
当x=
时,y=
,
所以此时P点坐标为(
,
),
综上所述,满足条件的P点坐标为(2,1)或(
,
).
故答案为(2,1)或(
,
).
-
科目: 来源: 题型:
查看答案和解析>>【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:
(1)二次函数和反比例函数的关系式.
(2)弹珠在轨道上行驶的最大速度.

【答案】(1)v=
(2<t≤5) (2)8米/分【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;
(2)把t=2代入(1)中二次函数解析式即可.
详解:(1)v=at2的图象经过点(1,2),
∴a=2.
∴二次函数的解析式为:v=2t2,(0≤t≤2);
设反比例函数的解析式为v=
,由题意知,图象经过点(2,8),
∴k=16,
∴反比例函数的解析式为v=
(2<t≤5);(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,
∴弹珠在轨道上行驶的最大速度在2秒末,为8米/分.
点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.
【题型】解答题
【结束】
24【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
(1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)(观察发现)如图 1,△ABC 和△CDE 都是等边三角形,且点 B、C、E 在一条直线上,连接 BD 和AE,BD、AE 相交于点 P,则线段 BD 与 AE 的数量关系是 ,BD 与 AE 相交构成的锐角的度数是 .(只要求写出结论,不必说明理由)

(2)(深入探究 1)如图 2,△ABC 和△CDE 都是等边三角形,连接 BD 和 AE,BD、AE 相交于点 P,猜想线段 BD 与 AE 的数量关系,以及 BD 与 AE 相交构成的锐角的度数. 请说明理由 结论:
理由:_______________________

(3)(深入探究 2)如图 3,△ABC 和△CDE 都是等腰直角三角形,且∠ACB=∠DCE=90°,连接 AD、BE,Q 为 AD 中点,连接 QC 并延长交 BE 于 K. 求证:QK⊥BE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5).
(1)求出这条抛物线的表达式;
(2)当t=0时,求S△OBN的值;
(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线
与
交于A,B两点,且点A的横坐标为4,过原点O的另一条直线l交双曲线
于P,Q两点(点P在第一象限),由点A,B,P,Q为顶点组成的四边形面积为24,则点P的坐标为_________. -
科目: 来源: 题型:
查看答案和解析>>【题目】等边三角形ABC 中,BD是角平分线,点E在BC边的延长线上,且CD=CE,则∠BDE的度数是( )

A.90°B.100°C.120°D.无法确定
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为( )

A.
B.
C.
D. 
相关试题