【题目】按要求完成下列题目.
(1)求:
+
+
+…+
的值.
对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成
的形式,而
=
﹣
,这样就把
一项(分)裂成了两项.
试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出
+
+
+…+
的值.
(2)若
=
+
①求:A、B的值:
②求:
+
+…+
的值.
参考答案:
【答案】(1)
;(2)①A和B的值分别是
和﹣
;②
.
【解析】
试题(1)根据题目叙述的方法即可求解;
(2)①把等号右边的式子通分相加,然后根据对应项的系数相等可求解;
②根据
=![]()
﹣![]()
把所求的每个分式化成两个分式的差的形式,然后求解.
试题解析:解:(1)
+
+
+…+![]()
=1﹣
+
﹣
+
﹣
+…+
﹣![]()
=1﹣![]()
=
;
(2)①∵
+![]()
=
=
,
∴
,
解得
.
∴A和B的值分别是
和﹣
;
②∵
=![]()
﹣![]()
![]()
=
(
﹣
)﹣
(
﹣
)
∴原式=![]()
﹣![]()
+![]()
﹣![]()
+…+![]()
﹣![]()
![]()
=![]()
﹣![]()
![]()
=
﹣![]()
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.

(1)求运动时间t的取值范围;
(2)t为何值时,△POQ的面积最大?最大值是多少?
(3)t为何值时,以点P、0、Q为顶点的三角形与Rt△AOB相似? -
科目: 来源: 题型:
查看答案和解析>>【题目】2017年中秋节期间,某商城隆重开业,某商家有计划选购甲、乙两种礼盒作为开业期间给予买家的礼品,已知甲礼盒的单价是乙礼盒单价的1.5倍;用600元单独购买甲种礼盒比单独购买乙种礼盒要少10个.
(1)求甲、乙两种礼盒的单价分别为多少元?
(2)若商家计划购买这两种礼盒共40个,且投入的经费不超过1050元,则购买的甲种礼盒最多买多少个?
-
科目: 来源: 题型:
查看答案和解析>>【题目】每年淘宝网都会举办“双十一”购物活动,许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售一件A商品成本为50元,网上标价80元.
(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引买主,问平均每次降价率为多少,才能使这件A商品的利润率为10%?(
≈0.83)
(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天,先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出60件A商品.在“双十一”购物活动这天,乙网店先将网上标价提高a%,再推出五折销售的促销活动,吸引了大量网购者,乙网店在“双十一”购物活动当天卖出的A商品数量也比原来一周卖出的A商品数量增加了a%,这样“双十一”活动当天乙网店的利润达到了3600元,求乙网店在“双十一”购物活动这天的网上标价为多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】感知:如图①,点E在正方形ABCD的BC边上,BF⊥AE于点F,DG⊥AE于点G.可知△ADG≌△BAF.(不要求证明)

拓展:如图②,点B、C在∠MAN的边AM、AN上,点E, F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边B上.CD=2BD.点E, F在线段AD上.∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为_________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在下列条件中,不能证明△ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
-
科目: 来源: 题型:
查看答案和解析>>【题目】课题学习:我们知道二次函数的图象是抛物线,它也可以这样定义:如果一个动点M(x,y)到定点A(0,m)(m>0)的距离与它到定直线y=﹣m的距离相等,那么动点M形成的图形就是抛物线y=ax2(a>0)的图象,如图所示.

(1)探究:当x≠0时,a与m有何数量关系?
(2)应用:已知动点M(x,y)到定点A(0,4)的距离与到定直线y=﹣4的距离相等,请写出动点M形成的抛物线的解析式.
(3)拓展:根据抛物线的平移变换,抛物线y=
(x﹣1)2+2的图象可以看作到定点A( , )的距离与它到定直线y=的距离相等的动点M(x,y)所形成的图形.
(4)若点D的坐标是(1,8),在(2)中求得的抛物线上是否存在点P,使得PA+PD最短?若存在,求出点P的坐标,若不存在,请说明理由.
相关试题