【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为
,则图中阴影部分的面积是( ) ![]()
A.![]()
B.![]()
C.
﹣ ![]()
D.![]()
参考答案:
【答案】A
【解析】解:∵∠ACB=90°,AC=BC=1, ∴AB=
,
∴S扇形ABD=
=
.
又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,
∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=
.
故选:A.
【考点精析】根据题目的已知条件,利用等腰直角三角形和扇形面积计算公式的相关知识可以得到问题的答案,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.

(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论;
(2)当点P移动到图(2)、图(3)的位置时,∠P、∠A、∠C又有怎样的关系?请分别写出你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列几何体中,主视图、俯视图、左视图都相同的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
的图象交y轴于点A,交x轴于点B,点F在射线BA上,过点F作x轴的垂线,点D为垂足,⑴若OD=6,求F点的坐标;
(2)若OD=12,M在线段FD上,M的纵坐标为m,连接BM,用含有m的代数式表示△BMF的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中描出点 A(﹣2,0)、B(3,1)、C(2,3),将各点用线段依次 连接起来,并解答如下问题:
(1)在平面直角坐标系中画出△ A′B′C′,使它与△ ABC 关于 x 轴对称,并直接写出△ A′B′C′三个顶点的坐标;
(2)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).
(1)求y与x之间的函数关系式;
(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2 , 如此继续下去,则正六边形A4B4C4D4E4F4的面积是.

相关试题