【题目】如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2. ![]()
(1)求证:Rt△ADE与Rt△BEC全等;
(2)求证:△CDE是直角三角形.
参考答案:
【答案】
(1)解:全等.理由是:
∵∠1=∠2,
∴DE=CE,
∵∠A=∠B=90°,AE=BC,
在Rt△ADE和Rt△BEC中,
,
∴Rt△ADE≌Rt△BEC(HL).
(2)解:是直角三角形.理由是:
∵Rt△ADE≌Rt△BEC,
∴∠AED=∠BCE,
∵∠ECB+∠BEC=90°,
∴∠AED+∠BEC=90°.
∴∠DEC=90°,
∴△CDE是直角三角形.
【解析】(1)估计等边对等角,推出DE=EC,再根据HL即可证明Rt△ADE≌Rt△BEC;(2)由Rt△ADE≌Rt△BEC,推出∠AED=∠BCE,由∠ECB+∠BEC=90°,推出∠AED+∠BEC=90°.即∠DEC=90°;
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,抛物线
与
轴交于A、B(A点在B点的左侧)与
轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;
(2)如图2,点P为第四象限抛物线上一点,连接PC,若
时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥
轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=
,连接KB并延长交抛物线于点Q,求PQ的长. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司2012年缴税70万元,2014年缴税90万元,求该公司这两年缴税的年平均增长率.若设该公司这两年缴税的年平均增长率为x,根据题意,可得方程( )
A.70x2=90
B.70(1+x)2=90
C.70(1+x)=90
D.70+70(1+x)+70(1+x)2=90 -
科目: 来源: 题型:
查看答案和解析>>【题目】计算
(1)(﹣4x2y3)(﹣
xyz)÷(
xy2)2
(2)(54x2y﹣108xy2﹣36xy)÷(18xy)
(3)(a+b+3)(a+b﹣3)
(4)20070+2﹣2﹣(
)2+2014. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=
BC,连接CD和EF. 
(1)求证:DE=CF;
(2)求EF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=
(x>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积最大,最大面积是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】若x+n与x+2的乘积中不含x的一次项,则n的值为( )
A.﹣2
B.2
C.0
D.1
相关试题