【题目】如图,△ACB与△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,求证:AE2+AD2=2AC2 . (提示:连接BD) ![]()
参考答案:
【答案】证明:连结BD, ![]()
∵△ACB与△ECD都是等腰直角三角形,
∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,
EC=DC,AC=BC,AC2+BC2=AB2 ,
∴2AC2=AB2 . ∠ECD﹣∠ACD=∠ACB﹣∠ACD,
∴∠ACE=∠BCD.
在△AEC和△BDC中,
,
∴△AEC≌△BDC(SAS).
∴AE=BD,∠E=∠BDC.
∴∠BDC=45°,
∴∠BDC+∠ADC=90°,
即∠ADB=90°.
∴AD2+BD2=AB2 ,
∴AD2+AE2=2AC2 .
【解析】连结BD,根据等边三角形的性质就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性质就可以得出∠ADB=90°,由勾股定理就可以得出结论.
【考点精析】关于本题考查的等腰直角三角形和等边三角形的性质,需要了解等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;等边三角形的三个角都相等并且每个角都是60°才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把47155精确到百位可表示为
-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下列证明过程,求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.
已知:________
求证:________ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,∠ADC的平分线交AB于点E,∠ABC的平分线交CD于点F,求证:四边形EBFD是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解答题

(1)在△ABC中,AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积. 如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.
请你将△ABC的面积直接填写在横线上 .
(2)思维拓展: 已知△ABC三边的长分别为
a(a>0),求这个三角形的面积.
我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.
(3)类比创新: 若△ABC三边的长分别为
(m>0,n>0,且m≠n),求出这个三角形的面积.
如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列叙述,其中不正确的是( )
A. 过一点有且只有一条直线与已知直线平行 B. 同角(或等角)的余角相等
C. 两点确定一条直线 D. 两点之间的所有连线中,线段最短
-
科目: 来源: 题型:
查看答案和解析>>【题目】不等式2x<6的非负整数解为( )
A.0,1,2 B.1,2 C.0,-1,-2 D.无数个
相关试题