【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形;
(2)当a=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当a为多少度时,△AOD是等腰三角形?
![]()
参考答案:
【答案】(1)证明见解析;(2)当α=150°时,△AOD是直角三角形,理由见解析;(3)当α的度数为125°或110°或140°时,△AOD是等腰三角形.
【解析】(1)根据旋转的性质可得出OC=OD,结合题意即可证得结论;
(2)结合(1)的结论可作出判断;
(3)找到变化中的不变量,然后利用旋转及全等的性质即可做出解答.
(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC
∴CO=CD,∠OCD=60°
∴△COD是等边三角形.
(2)解:当
=150°时,△AOD是直角三角形
理由是:∵△BOC≌△ADC
∴∠ADC=∠BOC=150°
又∵△COD是等边三角形
∴∠ODC=60°[来
∴∠ADO=∠ADC -∠ODC=90°,即△AOD是直角三角形.
(3)解:①要使AO=AD,需∠AOD=∠ADO
∵∠AOD=
=
,∠ADO= ![]()
∴
= ![]()
∴
②要使OA=OD,需∠OAD=∠ADO
∵∠OAD=
(∠AOD+∠ADO)=
=![]()
∴
=![]()
∴
③要使DO=DA,需∠OAD=∠AOD.
∵∠AOD=
=
,∠OAD=
∴
=
,解得
综上所述:当
的度数为
或
或
时,△AOD是等腰三角形.
“点睛”本题以“空间与图形”中的核心知识(如等边三角形)的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进,试题中几何演绎推理的难度适中,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等)能较好地考查学生的推理、探究及解决问题的能力.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程:①(2x﹣5)2=9 ②x2﹣2x﹣4=0 ③x2﹣3x﹣7=0 ④3x(x﹣2)=2(2﹣x)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知am=2,an=3,则a3m+2n的值是( )
A. 6 B. 24 C. 36 D. 72
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c(a≠0)图象的顶点为D,其图象与x轴的交点A,B的横坐标分别为﹣1,3,与y轴负半轴交于点C.下面五个结论:①2a+b=0;②a+b+c>0;③4a+b+c>0;④只有当a=
时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a的值可以有三个.那么,其中正确的结论是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】命题“若a是偶数,则3a是偶数”的逆命题是( )
A. 若3a是偶数,则a是偶数 B. 若3a是偶数,则a是奇数
C. 若3a是奇数,则a是奇数 D. 若3a是奇数,则a是偶数
-
科目: 来源: 题型:
查看答案和解析>>【题目】餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )
A.5×1010千克
B.50×109千克
C.5×109千克
D.0.5×1011千克 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y1=
(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=
;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2 其中正确结论的个数是( )
A. 1个B.2个C.3个D.4个
相关试题