【题目】如图,已知在△ABC中,∠ACB=90°,BC=2,AC=4,点D在射线BC上,以点D为圆心,BD为半径画弧交边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC于点G.
(1)求证:△EFG∽△AEG;
(2)设FG=x,△EFG的面积为y,求y关于x的函数解析式并写出定义域;
(3)联结DF,当△EFD是等腰三角形时,请直接写出FG的长度.
![]()
![]()
![]()
参考答案:
【答案】(1)详见解析;(2)
;(3)当△EFD为等腰三角形时,FG的长度是:
.
【解析】试题分析:(1)由等边对等角得∠B=∠BED,由同角的余角相等可得∠A=∠GEF,进而由两角分别相等的两个三角形相似,可证△EFG∽△AEG;
(2)作EH⊥AF于点H,由tanA=
及△EFG∽△AEG,得AG=4x,AF=3x,EH=
,
可得y关于x的解析式;
(3)△EFD是等腰三角形,分三种情况讨论:①EF=ED;②ED=FD;③ED=EF三种情况讨论即可.
试题解析:(1)∵ ED=BD,
∴ ∠B=∠BED.
∵ ∠ACB=90°,
∴ ∠B+∠A=90°.
∵ EF⊥AB,
∴ ∠BEF=90°.
∴ ∠BED+∠GEF=90°.
∴ ∠A=∠GEF.
∵ ∠G是公共角,
∴ △EFG∽△AEG;
(2)作EH⊥AF于点H.
![]()
∵ 在Rt△ABC中,∠ACB=90°,BC=2,AC=4,
∴tanA=
=
,
∴ 在Rt△AEF中,∠AEF=90°,tanA=
=
,
∵ △EFG∽△AEG,
∴
,
∵ FG=x,
∴ EG=2x,AG=4x.
∴ AF=3x.
∵ EH⊥AF,
∴ ∠AHE=∠EHF=90°.
∴ ∠EFA+∠FEH=90°.
∵ ∠AEF=90°,
∴ ∠A+∠EFA=90°,
∴ ∠A=∠FEH,
∴ tanA =tan∠FEH,
∴ 在Rt△EHF中,∠EHF=90°,tan∠FEH=
=
,
∴ EH=2HF,
∵ 在Rt△AEH中,∠AHE=90°,tanA=
=
,
∴ AH=2EH,
∴ AH=4HF,
∴ AF=5HF,
∴ HF=
,
∴EH=
,
∴y=
FG·EH=
x·
=
定义域:(0<x≤
);
(3)当△EFD为等腰三角形时,
![]()
①当ED=EF时,则有∠EDF=∠EFD,
∵∠BED=∠EFH,
∴∠BEH=∠AHG,
∵∠ACB=∠AEH=90°,
∴∠CEF=∠HEF,即EF为∠GEH的平分线,
则ED=EF=x,DG=8x,
∵anA=
,
∴x=3,即BE=3;
②若FE=FD, 此时FG的长度是
;
③若DE=DF, 此时FG的长度是
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(–4,n),B(2,–4)是一次函数y=kx+b的图象和反比例函数
的图象的两个交点.(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求不等式
的解集(请直接写出答案).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=kx+6与x轴、y轴分别交于点E,F,点E的坐标为(﹣8,0),点A的坐标为(﹣6,0)
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,探究:当点P运动到什么位置时,△OPA的面积为
,并说明理由;(4)问在x轴上是否存在点Q,使得△EFQ为等腰三角形?若存在,求出符合条件的Q的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下面是某同学对多项式(a2-4a+2)(a2-4a+6)+4进行因式分解的过程:
解:设a2-4a=y,则
原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(a2-4a+4)2.(第四步)
(1)该同学因式分解的结果是否彻底:________(填“彻底”或“不彻底”);
(2)若不彻底,请你直接写出因式分解的最后结果:________;
(3)请你模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在纸面上有一数轴(如图1),折叠纸面.
(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与 表示的点重合;
(2)若﹣2表示的点与8表示的点重合,回答以下问题:
①16表示的点与 表示的点重合;
②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是 、 .
(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,图形中每一小格正方形的边长为1,已知△ABC

(1)AC的长等于 .(结果保留根号)
(2)将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是 ;
(3)画出将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C1,并写出A点对应点A1的坐标?
-
科目: 来源: 题型:
查看答案和解析>>【题目】顶点都在格点上的三角形叫做格点三角形,如图,在4×4的方格纸中,△ABC是格点三角形.
(1)在图1中,以点C为对称中心,作出一个与△ABC成中心对称的格点三角形DEC,直接写出AB与DE的位置关系;
(2)在图2中,以AC所在的直线为对称轴,作出一个与△ABC成和对称的格点三角形AFC,直接写出△BCF是什么形状的特殊三角形.

相关试题