【题目】“抢红包”是2015年春节十分火爆的一项网络活动,某企业有4000名职工,从中随机抽取350人,按年龄分布和对“抢红包”所持态度情况进行了调查,并将调查结果绘成了条形统计图和扇形统计图.
![]()
(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?
(2)如果把对“抢红包”所持态度中的“经常(抢红包)”和“偶尔(抢红包)”统称为“参与抢红包”,那么这次接受调查的职工中“参与抢红包”的人数是多少?
(3)请估计该企业“从不(抢红包)”的人数是多少?
参考答案:
【答案】(1)25﹣35;(2)217;(3)1520.
【解析】分析:(1)根据中位数的概念和抽查的人数确定中位数所在的范围;
(2)求出“参与抢红包”的人数所占的百分比,求出人数;
(3)求出从不(抢红包)”的人数所占是百分比,求出该企业“从不(抢红包)”的人数.
本题解析:(1)∵抽取350人,∴中位数是175和176的平均数,
∴中位数所在的年龄段是25﹣35;
(2)这次接受调查的职工中“参与抢红包”的人数是:350×(40%+22%)=217人;
(3)估计该企业“从不(抢红包)”的人数是:4000×(1﹣40%﹣22%)=1520人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(9)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:

(1)按表格数据格式,表中的a=;b=;
(2)请估计:当次数s很大时,摸到白球的频率将会接近;
(3)请推算:摸到红球的概率是(精确到0.1);
(4)试估算:口袋中红球有多少只? -
科目: 来源: 题型:
查看答案和解析>>【题目】下列四个命题是真命题的是( )
A.内错角相等
B.如果两个角的和是180°,那么这两个角是邻补角
C.在同一平面内,平行于同一条直线的两条直线互相平行
D.在同一平面内,垂直于同一条直线的两条直线互相垂直
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.

(1)①若将线段AB绕点O逆时针旋转90°得到线段A1B1 , 试在图中画出线段A1B1 .
②若线段A2B2与线段A1B1关于y轴对称,请画出线段A2B2 .
(2)若点P是此平面直角坐标系内的一点,当点A、B1、B2、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标(写出一个即可). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求证:四边形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?
相关试题