【题目】下列各式中:
①由3x=﹣4系数化为1得x=﹣
;
②由5=2﹣x移项得x=5﹣2;
③由
去分母得2(2x﹣1)=1+3(x﹣3);
④由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1.
其中正确的个数有( )
A. 0个 B. 1个 C. 3个 D. 4个
参考答案:
【答案】A
【解析】
根据解一元一次方程的去分母、去括号、移项及系数化1的方法依次判断后即可解答.
①由3x=﹣4系数化为1得x=﹣
,可知①错误;
②由5=2﹣x移项得x=2﹣5,可知②错误;
③由
去分母得2(2x﹣1)=6+3(x﹣3),可知③错误;
④由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,可知④错误.
综上,正确的结论有0个,故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算
(1)2x(x+1)﹣(x+2)(x﹣2)+(x﹣1)2
(2)(x﹣1﹣
)
. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知DE⊥AC,BF⊥AC,垂足分别是E、F,AE=CF,DC∥AB,
(1)试证明:DE=BF;
(2)连接DF、BE,猜想DF与BE的关系?

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=
,其中
为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

-
科目: 来源: 题型:
查看答案和解析>>【题目】A,B两地相距2400米,甲、乙两人分别从A,B两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A地15分钟后甲到达B地.
(1)求甲每分钟走多少米?
(2)两人出发多少分钟后恰好相距480米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是10和19,则△CDE的面积为_____________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( )天.
A. 10 B. 20 C. 30 D. 25
相关试题