【题目】小明设计了点做圆周运动的一个动画游戏,如上图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:l=
t2+
t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.
(1)甲运动4s后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
![]()
参考答案:
【答案】(1)甲运动4s后的路程是14cm;
(2)甲、乙从开始运动到第一次相遇时,它们运动了3s;
(3)甲、乙从开始运动到第二次相遇时,它们运动了7s.
【解析】试题分析:(1)根据题目所给的函数解析式把t=4s代入求得l的值即可;
(2)根据图可知,二者第一次相遇走过的总路程为半圆,分别求出甲、乙走的路程,列出方程求解即可;
(3)根据图可知,二者第二次相遇走过的总路程为一圈半,也就是三个半圆,分别求出甲、乙走的路程,列出方程求解即可.
试题解析:(1)当t=4s时,l=
t2+
t=8+6=14(cm),
答:甲运动4s后的路程是14cm;
(2)由图可知,甲乙第一次相遇时走过的路程为半圆21cm,
甲走过的路程为
t2+
t,乙走过的路程为4t,
则
t2+
t+4t=21,
解得:t=3或t=﹣14(不合题意,舍去),
答:甲、乙从开始运动到第一次相遇时,它们运动了3s;
(3)由图可知,甲乙第一次相遇时走过的路程为三个半圆:3×21=63cm,
则
t2+
t+4t=63,
解得:t=7或t=﹣18(不合题意,舍去),
答:甲、乙从开始运动到第二次相遇时,它们运动了7s
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简求值:(﹣3x2﹣4y2+2x)﹣(2x2﹣5y2)+(5x2﹣8)+6x,其中x,y满足|y﹣5|+(x+4)2=0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程:﹣5x+9=7x﹣15.
-
科目: 来源: 题型:
查看答案和解析>>【题目】0.252018×(﹣4)2019=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=x2﹣x﹣6.
(1)画出函数的图象;
(2)观察图象,指出方程x2﹣x﹣6=0的解及不等式x2﹣x﹣6>0解集;
(3)求二次函数的图象与坐标轴的交点所构成的三角形的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.
(1)分别求线段BC、DE所在直线对应的函数关系式.
(2)当甲队清理完路面时,求乙队铺设完的路面长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l:y=﹣
x+b与x轴、y轴分别交于点A,B,直线l1:y=
x+1与y轴交于点C,设直线l与直线l1的交点为E(1)如图1,若点E的横坐标为2,求点A的坐标;
(2)在(1)的前提下,D(a,0)为x轴上的一点,过点D作x轴的垂线,分别交直线l与直线l1于点M、N,若以点B、C、M、N为顶点的四边形为平行四边形,求a的值;
(3)如图2,设直线l与直线l2:y=﹣
x﹣3的交点为F,问是否存在点B,使BE=BF,若存在,求出直线l的解析式,若不存在,请说明理由.
相关试题