【题目】列方程解应用题:
有一些相同的房间需要粉刷,一天 3名一级技工去粉刷 8个房间,结果其中有 50
墙面未来得及刷;同样时间内 5名二级技工粉刷了 10个房间之外,还多刷了另外的40
墙面.已知每名同级别的技工每天的工作效率相同,每名一级技工比二级技工每天多刷 10
墙面,求每个一级技工和二级技工每天粉刷的墙面各是多少平方米?
参考答案:
【答案】每个一级和二级技工每天粉刷的墙面各是122和112平方米.
【解析】
设每个二级技工每天刷xm2,则每个一级技工每天刷(x+10)m2,根据题意列出方程解答即可.
设每个二级技工每天刷xm2,则每个一级技工每天刷(x+10)m2
依题意得
,
解得x=112
x+10=122,
答:每个一级和二级技工每天粉刷的墙面各是122和112平方米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】本学期第三周周末,七年级27班在人美心善的范老师的带领下开展了大型“绿水青山都是金山银山”的植树活动.全班一起种植许愿树和发财树.已知购买1棵许愿树和2棵发财树需要42元,购买2棵许愿树和1棵发财树需要48元.
(1)你来算一算许愿树、发财树每棵各多少钱?
(2)范老师传达最高指示:全班种植许原树和发财树共20棵,且许愿树的数量不少于发财树的数量,但由于班费资金紧张,范老师还要求两种树的总成本不得高于312元.聪明的同学们,你们知道共有哪几种种植方案吗?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.若BC=8,则四边形AFDE的面积是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,已知线段AB=12cm,点C为线段AB上的一个动点,点D、E分别是AC和BC的中点.
(1)若点C恰好是AB的中点,则DE= cm;若AC=4cm,则DE= cm;
(2)随着C点位置的改变,DE的长是否会改变?如果改变,请说明原因;如果不变,请求出DE的长;
(3)知识迁移:如图②,已知∠AOB=120°,过角的内部任意一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE的度数与射线OC的位置无关.

-
科目: 来源: 题型:
查看答案和解析>>【题目】整式与方程
(1)先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.
(2)解方程:
①4﹣x=3(2﹣x)
②
=3+
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市某蔬菜种植农户购买白菜苗和西红柿苗共1000株,其中白菜苗每株3元,西红柿苗每株5元.已知该农户打算用不少于3600元但不多于3800元的资金购买两种蔬菜.
(1)求该农户可以购买白菜苗株数的最大值和最小值;
(2)该农户按(1)中购买白菜苗株数的最小值的方案购买两种蔬菜苗,经过农户的精心培育,两种蔬菜苗全成活.根据以往的数据分析,平均一株白菜苗可长成2千克白菜,平均一株西红柿苗可结3千克西红柿.农户计划采用直接销售和生态采摘销售两种方式进行销售,其中直接销售白菜的售价为每千克4元,直接销售西红柿的售价为每千克5元;生态采摘销售时两种蔬菜的售价一样,都比直接销售白菜的售价高
,但生态采摘过程中会有
的损耗.当白菜和西红柿各直接销售一半后、剩下的全部采用生态采摘销售时,该农户可获得8080元的利润.求
的值.
相关试题