【题目】我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:
如图,点P在以MN(南北方向)为直径的⊙O上,MN=8,PQ⊥MN交⊙O于点Q,垂足为H,PQ≠MN,弦PC、PD分别交MN于点E、F,且PE=PF.![]()
(1)比较
与
的大小;
(2)若OH=2
,求证:OP∥CD;
(3)设直线MN、CD相交所成的锐角为α,试确定cosα=
时,点P的位置.
参考答案:
【答案】
(1)解:∵PE=PF,PH⊥EF,
∴PH平分∠FPE,
∴∠DPQ=∠CPQ,
∴
=
;
(2)证明:连结CD、OP、OQ,OQ交CD于B,如图,
∵OH=2
,OP=4,
∴PH=
=2
,
∴△OPH为等腰直角三角形,
∴∠OPQ=45°,
而OP=OQ,
∴△OPQ为等腰直角三角形,
∴∠POQ=90°,
∴OP⊥OQ,
∵
=
,
∴OQ⊥CD,
∴OP∥CD
![]()
(3)解:直线CD交MN于A,如图,
∵cosα=
,
∴∠α=30°,即直线MN、CD相交所成的锐角为30°,
而OB⊥CD,
∴∠AOB=60°,
∵OH⊥PQ,
∴∠POH=60°,
在Rt△POH中,∵sin∠POH=
,
∴PH=4sin60°=2
,
即点P到MN的距离为2
.
![]()
【解析】(1)根据等腰三角形的性质,由PE=PF,PH⊥EF可判断PH平分∠FPE,然后根据圆中角定理得到
=
;(2)连结CD、OP、OQ,OQ交CD于B,如图,先计算出PH=2
,则可判断△OPH为等腰直角三角形得到∠OPQ=45°,再判断△OPQ为等腰直角三角形得到∠POQ=90°,然后根据垂径的推理由
=
得到OQ⊥CD,则根据平行线的判定方法得OP∥CD;(3)直线CD交MN于A,如图,由特殊角的三角函数值得∠α=30°,即直线MN、CD相交所成的锐角为30°,利用OB⊥CD得到∠AOB=60°,则∠POH=60°,然后在Rt△POH中利用正弦的定义计算出PH即可.本题考查了圆的综合题:熟练掌握垂径定理及其推理、圆周角定理;能够灵活应用等腰直角三角形的性质和三角函数进行几何计算.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
:
与x轴、y轴分别交于A、B两点,直线
与x轴、y轴分别交于C、
两点,且
︰
︰
.(1)求直线
的解析式,并判断
的形状;(2)如图
,
为直线
上一点,横坐标为
,
为直线
上一动点,当
最小时,将线段
沿射线
方向平移,平移后
、
的对应点分别为
、
,当
最小时,求点
的坐标;(3)如图
,将
沿着
轴翻折,得到
,再将
绕着点
顺时针旋转
(
)得到
,直线
与直线
、
轴分别交于点
、
.当
为等腰三角形时,请直接写出线段
的长. 

-
科目: 来源: 题型:
查看答案和解析>>【题目】(某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.

(1)试求出y与x之间的一个函数关系式;
(2)利用(1)的结论:
求每千克售价为多少元时,每天可以获得最大的销售利润.
②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是( )

A. BC=B′C′ B. ∠A=∠A′ C. AC=A′C′ D. ∠C=∠C′
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是( )

A. ∠A与∠D互为余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,∠A=∠C,点P在边AB上.

(1)判断四边形ABCD的形状并加以证明;
(2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B、C分别落在点B′、C′上,且B′C′经过点D,折痕与四边形的另一交点为Q.
①在图2中作出四边形PB′C′Q(保留作图痕迹,不必说明作法和理由);
②如果∠C=60°,那么
为何值时,B′P⊥AB. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①
BCD≌
CBE;②
BAD≌
BCD;③
BDA≌
CEA;④
BOE≌
COD;⑤
ACE≌
BCE;上述结论一定正确的是
A. ①②③ B. ②③④ C. ①③⑤ D. ①③④
相关试题