【题目】(1)计算:
.
(2)如图,一次函数y=x+b与反比例函数
在第一象限的图象交于点B,且点B的横坐标为1,过点B作y轴的垂线,C为垂足,若S△BCO=
,求一次函数和反比例函数的解析式.
![]()
参考答案:
【答案】(1)
;(2)
,
.
【解析】试题分析:(1)根据实数的运算法则以及运算顺序计算即可;
(2)根据点B的横坐标是1,求出OC的长利用三角形的面积求出b值,点B的坐标即可求出,代入反比例函数即可求出k值,解析式可得.
试题解析:解:(1)原式=﹣1+3+
﹣1=1+
;
(2)∵一次函数y=x+b过点B,且点B的横坐标为1,∴y=1+b,即B(1,1+b).
∵BC⊥y轴,且S△BCO=1.5,∴
×OC×BC=
×1×(b+1)=1.5,解得:b=2,∴B(1,3),∴一次函数的解析式为y=x+2.
又∵y=
过点B,∴3=
,解得:k=3,∴反比例函数的解析式为:y=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .

备用图
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义一种新运算:观察下列式:
1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13
(1)请你想一想:a⊙b= ;
(2)若a≠b,那么a⊙b b⊙a(填入“=”或“≠” )
(3)若a⊙(﹣2b)=3,请计算 (a﹣b)⊙(2a+b)的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为
,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得
≌
即可得
,则可证得
为
的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得
利用勾股定理即可求得
的长,又由OE∥AB,证得
根据相似三角形的对应边成比例,即可求得
的长,然后利用三角函数的知识,求得
与
的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.试题解析:(1)证明:连接OD,

∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切线;(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为


【题型】解答题
【结束】
25【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】 某单位在二月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.
(1)如果设参加旅游的员工共有a(a
)人,则甲旅行社的费用为 元,乙旅行社的费用为 元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由;
(3)如果计划在二月份外出旅游七天,设最中间一天的日期为m.
①这七天的日期之和为 ;(用含m的代数式表示,并化简.)
②假如这七天的日期之和为63的倍数,则他们可能于二月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)
-
科目: 来源: 题型:
查看答案和解析>>【题目】检修小组从A地出发,在东西路上检修线路,若规定向东行驶的路程为正数,向西行驶的路程为负数,一天中行驶记录(单位;千米)如下:

(1)收工时检修小组在A地的哪侧,距A地多远?
(2)若每千米耗油0.3升,从出发到收工共耗油多少升?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是边长为
的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).
(1)设剪去的小正方形的边长为
,折成的长方体盒子的容积为
, 用只含字母
的式子表示这个盒子的高为________
,底面积为________
,盒子的容积
为________
;(2)为探究盒子的体积与剪去的小正方形的边长
之间的关系,小明列表
1
2
3
4
5
6
7
8


_______



_______


请将表中数据补充完整,并根据表格中的数据写出当
的值逐渐增大时,
的值如何变化?
相关试题