【题目】某班墙上布置的“学习园地”是一个长方形区域,它的面积为3a2+9ab﹣6a,已知这个长方形“学习园地”的长为3a,则宽为__
参考答案:
【答案】a+3b﹣2.
【解析】
根据题意列出算式,在利用多项式除以单项式的法则计算可得.
根据题意,长方形的宽为(3a2+9ab﹣6a)÷3a=a+3b﹣2,
故答案为:a+3b﹣2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.

(1)指出旋转中心,并求出旋转的度数;
(2)求出∠BAE的度数和AE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为( )
A. 3.1×105 B. 31×105 C. 0.31×107 D. 3.1×106
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列调查,适合用普查方式的是( )
A. 了解义乌市居民年人均收入B. 了解义乌市民对“低头族”的看法
C. 了解义乌市初中生体育中考的成绩D. 了解某一天离开义乌市的人口流量
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD的边长为6,E,F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.

(1)求证:EF=MF;
(2)若AE=2,求FC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线经过A(﹣1,0),B(3,0),C(0,
)三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量y(kg)随销售单价x(元/ kg)的变化而变化,具体变化规律如下表所示:

设该绿茶的月销售利润为w(元)(销售利润=单价×销售量-成本)
(1)请根据上表,求出y与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求w与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,w的值最大?
(3)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于80元,要想在全部收回装修投资的基础上使第二个月的利润至少达到1700元,那么第二个月时里应该确定销售单价在什么范围内?
相关试题