【题目】某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.
(1)求购买1个排球、1个篮球的费用分别是多少元?
(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?
【答案】(1)每个排球的价格是60元,每个篮球的价格是120元;(2)m=20时,购买排球、篮球总费用的最大,购买排球、篮球总费用的最大值为6000元.
【解析】(1)根据购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元列出方程组,解方程组即可;
(2)根据购买排球和篮球共60个,篮球的数量不超过排球数量的2倍列出不等式,解不等式即可.
(1)设每个排球的价格是x元,每个篮球的价格是y元,
根据题意得:
,
解得:
,
所以每个排球的价格是60元,每个篮球的价格是120元;
(2)设购买排球m个,则购买篮球(60﹣m)个,
根据题意得:60﹣m≤2m,
解得m≥20,
又∵排球的单价小于蓝球的单价,
∴m=20时,购买排球、篮球总费用的最大,
购买排球、篮球总费用的最大值=20×60+40×120=6000元.