【题目】(8分)如图,△ABC中, ∠BAC=∠ADB,BE平分∠ABC交AD于点E,交AC于点F,过点E作EG//BC交AC于点G.(1)求证: AE=AF; (2)若AG=4,AC=7,求FG的长.
![]()
参考答案:
【答案】(1)见解析;(2)1.
【解析】分析:(1)由角平分线的定义和已知条件证出∠AFB=∠AEF,即可得出结论;(2)由SAS证明:△ABF≌△HBF,得出AF=FH,∠AFB=∠HFB,再证明1△AEG≌△FHC,得出AG=FC=4,即可得出结果.
本题解析:
(1)∵BF平分∠ABC
∴∠ABF=∠CBF
∵∠AFB=180°-∠ABF-∠BAF
∠BED=180°-∠CBF-∠ADB
又∵∠BAC=∠ADB
∴∠AFB=∠BED
∵∠AEF=∠BED
∴∠AFB=∠AEF
∴AE=AF
(2)如图,在BC上截取BH=AB,连接FH
![]()
在△ABF和△HBF中
∵![]()
∴△ABF≌△HBF(SAS)
∴AF=FH,∠AFB=∠HFB
∵∠AFB=∠AEF
∴∠HFB=∠AEF
∴AE∥FH
∴∠GAE=∠CFH
∵EG∥BC
∴∠AGE=∠C
∵AE=AF
∴AE=FH
在△AEG和△FHC中
∵![]()
∴△AEG≌△FHC(AAS)
∴AG=FC=4
∴FG=AG+ FC -AC=1
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法错误的是( )
A.两直线平行,内错角相等
B.两直线平行,同旁内角相等
C.同位角相等,两直线平行
D.平行于同一条直线的两直线平行 -
科目: 来源: 题型:
查看答案和解析>>【题目】学校制定成绩的评价方案:期中成绩占30%,期末成绩占70%,小李期中与期末成绩分别为80分和90分,则本学期他的成绩为分.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a、b、c满足|a﹣
|+
+(c﹣4
)2=0.(1)求a、b、c的值;
(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为测量旗杆的高度,我们取1米长的木杆直立在阳光下,其影长为1.5米,在同一时刻测得旗杆的影长为10.5米,则旗杆的高度是____米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某潜水艇从海平面以下27米处上升到海平面以下l9米处,则此潜水艇上升了__米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列关系式中,正确的是( )
A.(a+b)2=a2﹣2ab+b2
B.(a﹣b)2=a2﹣b2
C.(a+b)2=a2+b2
D.(a+b)(a﹣b)=a2﹣b2
相关试题