【题目】如图,等腰直角△ABC中,∠ACB=90°,点D在BA的延长线上,连接CD,过点C作CE⊥CD,使CE=CD,连接BE,若点N为BD的中点,连接CN、BE.
(1)求证:AB⊥BE.
(2)求证:AE=2CN.
![]()
参考答案:
【答案】见解析
【解析】
(1)证明△DCA与△ECB全等,再利用全等三角形的性质证明即可;
(2)延长CN至点K,使NK=CN,连接DK,利用已知条件证明△DNK≌△BNC,所以可得DK=BC=AC,∠KDC+∠DCB=180°,又因为∠DCK=∠ACE,DK=AC,CD=CE,由三角形的全等可得AE=CK,所以AE=2CN.
证明:(1)∵CE⊥CD,∠ACB=90°,
∴∠DCE=∠ACB=90°,
∴∠DCA+∠ACE=∠BCE+∠ACE,
∴∠DCA=∠BCE,
在△DCA与△ECB中,
,
∴△DCA≌△ECB(SAS),
∴∠CDA=∠CEB,∠DAC=∠EBC=135°,
∴∠ABE=∠CBE-∠ABC=135°-45°=90°,
∴AB⊥BE;
(2)延长CN至点K,使NK=CN,连接DK.
![]()
∵∠DCA+∠ACE=90°,∠BCE+∠ACE=90°,
∴∠DCB+∠ACE=180°,
∴∠KDN=∠CBN,
∴DK∥BC,
∵在△DNK与△BNC中,
![]()
∴△DNK≌△BNC,
∴DK=BC=AC,
∴∠KDC+∠DCB=180°,
∵∠DCK=∠ACE,
又∵DK=AC,CD=CE,
∵△KDC≌△ACE,
∴AE=CK,
∴AE=2CN.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在△ABC中三个内角的度数满足∠ABC:∠C:∠A=5:6:7,BD是△ABC的角平分线,DE是△DBC的高.
(1)求△ABC各内角的度数;
(2)求图中的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在梯形ABCD中,AD∥BC , E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF .
其中正确的个数是( )
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,梯形ABCD中,AD∥BC , ∠B=30°,∠C=60°,E、F、M、N分别为AB、CD、BC、DA的中点,若BC=7,MN=3,则EF为( )

A.3
B.4
C.5
D.6 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等边△ABC和等边△BPE,点P在BC的延长线上,EC的延长线交AP于M,连BM.
(1)求证:AP=CE;
(2)求∠PME的度数;
(3)求证:BM平分∠AME;
(4)AM,BM,MC之间有怎样的数量关系,直接写出,不需证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】梯形ABCD中AD∥BC , E是AB的中点,过E作两底的平行线交DC于F , 则下面结论错误的是( )
A.EF平分线段AC
B.梯形上下底间任意两点的连线段被EF平分
C.梯形EBCF与梯形AEFD周长之差的绝对值等于梯形两底之差的绝对值
D.梯形EBCF的面积比梯形AEFD的面积大 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F , AB=5,AC=2,则DF的长为.

相关试题