【题目】如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.
![]()
(1)求证:DE=CE.
(2)若∠CDE=25°,求∠A 的度数.
参考答案:
【答案】(1)证明见解析;(2)80°
【解析】
(1)根据角平分线的性质可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,进而可得出∠EDC=∠ECD,再利用等角对等边即可证出DE=CE;
(2)由(1)可得出∠ECD=∠EDC=25°,进而可得出∠ACB=2∠ECD=50°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A的度数.
(1)证明:∵CD 是∠ACB 的平分线,∴∠BCD=∠ECD.
∵DE∥BC,
∴∠EDC=∠BCD,
∴∠EDC=∠ECD,
∴DE=CE
![]()
(2)解:∵∠ECD=∠EDC=25°,∴∠ACB=2∠ECD=50°.
∵AB=AC,
∴∠ABC=∠ACB=50°,
∴∠A=180°﹣50°﹣50°=80°
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了弘扬优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“两个黄鹂鸣翠柳”.
(1)小明回答该问题时,对第二个字是选“个”还是选“只”难以抉择,若随机选择其中一个,则小明回答正确的概率是__________;
(2)小丽回答该问题时,对第二个字是选“个”还是选“只”、第五个字是选“鸣”还是选“明”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽查部分学生做了一次问卷调查,要求学生选出自己最喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:

请根据图中信息,解答下列问题:
该调查的样本容量为______,
______
,“第一版”对应扇形的圆心角为______
;
请你补全条形统计图;
若该校有1000名学生,请你估计全校学生中最喜欢“第三版”的人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC,若△ABC的边长为4,AE=2,则BD的长为( )

A. 2 B. 3 C.
D.
+1 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边三角形ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=
,则△ABC的边长为____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).
(1)作出与△ABC关于x轴对称的△A1B1C1,并写出A1、B1、C1的坐标;
(2)以原点O为位似中心,在原点的另一侧画出△A2B2C2,使
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,正三角形ABC的边长为3+
.(1)如图,正方形EFPN的顶点E,F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的面积.

相关试题