【题目】如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4
,DC=2
.
(1)求BE的长;
(2)求四边形DEBC的面积.
(注意:本题中的计算过程和结果均保留根号)
![]()
参考答案:
【答案】(1)BE=6﹣2
;(2)S四边形DEBC=36+6
.
【解析】
(1)解直角三角形求出AD、AE即可解决问题;
(2)作DF⊥BC于F.则四边形ABFD是矩形,解直角三角形求出CF,即可解决问题;
(1)在四边形ABCD中,∵AD∥BC,∠ABC=90°,
∴∠BAD=90°,
∵AB=AD,
∴∠ABD=∠ADB=45°,
∵∠BDE=15°,
∴∠ADE=30°,
在Rt△ADE中,AE=DE×sin30=2
,AD=DEcos30°=6,
∴AB=AD=6,
∴BE=6﹣2
.
(2)作DF⊥BC于F.则四边形ABFD是矩形,
![]()
∴BF=AD=6,DF=AB=6,
在Rt△DFC中,FC=
,
∴BC=6+4
,
∴S四边形DEBC=S△DEB+S△BCD=
×(6﹣2
)×6+
(6+4
)×6=36+6
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CFCA;④若AB=3
,AD=2BD,则AF=
.其中正确的结论是______.(填写所有正确结论的序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).
他们的各项成绩如下表所示:
修造人
笔试成绩/分
面试成绩/分
甲
90
88
乙
84
92
丙
x
90
丁
88
86
(1)直接写出这四名候选人面试成绩的中位数;
(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;
(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.
-
科目: 来源: 题型:
查看答案和解析>>【题目】边长为
,
的矩形发生形变后成为边长为
,
的平行四边形,如图1,平行四边形
中,
,
边上的高为
,我们把
与
的比值叫做这个平行四边形的“形变比”.

(1)若形变后是菱形
(如图2),则形变前是什么图形?(2)若图2中菱形
的“形变比”为
,求菱形
形变前后的面积之比;(3)当边长为3,4的矩形变后成为一个内角是30°的平行四边形时,求这个平行四边形的“形变比”.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.
(1)求该商店3月份这种商品的售价是多少元?
(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.
(1)求证:∠BCD=∠BEC;
(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.

相关试题