【题目】如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.
(1)求证:△ABE≌△CAD;
(2)求∠PBQ的度数.
![]()
参考答案:
【答案】(1)见解析;(2)30o
【解析】试题分析:(1)由等边三角形的性质可得AB=AC,∠BAC=∠C=60°,然后利用“边角边”即可证明两三角形;
(2)由SAS可得△ABE≌△CAD,进而得出对应角相等,再通过角之间的转化即可求解∠BPD的度数,进而求得结论.
试题解析:
∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠C=60°,
在△ABE与△CAD中,
∴△ABE≌△CAD(SAS);
(2)由(1)知△ABE≌△CAD,
∴∠ABE=∠CAD,
∴∠BPQ=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.
∴∠PBQ=90°-∠BPQ=30°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某种商品原价300元,连续两次降价x%后售价为192元,则x=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为( )

A. 3 B. 4 C. 5 D. 6
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是一次函数y=kx+b的图象.

(1)求这个一次函数的解析式?
(2)试判断点P(1,-1)是否在这个一次函数的图象上?
(3)求原点O到直线AB的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,-1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),

(1)点A的坐标是 ,n= ,k= ,b= ;
(2)x取何值时,函数y=kx+b的函数值大于函数y=x+1的函数值;
(3)求四边形AOCD的面积;
(4)是否存在y轴上的点P,使得以点P,B,D为顶点的三角形是等腰三角形?若存在求出点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若a<0<b,则化简|a-b|+a的结果为__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点
A. C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2017次相遇在边 ( )上.

A.AB
B. BC
C. CD
D. DA
相关试题