【题目】某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.
(1)求每个篮球和每个足球的售价;
(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?
参考答案:
【答案】(1)每个篮球和的售价为100元,每个足球的售价为120元;(2)25.
【解析】试题分析:(1)设每个篮球和每个足球的售价分别为x元,y元,根据题意列出方程组,求出方程组的解即可;
(2)设篮球购买a个,则足球购买(50﹣a)个,根据题意列出不等式,求出不等式的解集即可确定出最多购买的足球.
试题解析:(1)设每个篮球和每个足球的售价分别为x元,y元,根据题意得:
,解得:
,
答:每个篮球和的售价为100元,每个足球的售价为120元;
(2)设足球购买a个,则篮球购买(50﹣a)个,根据题意得:120a+100(50﹣a)≤5500,整理得:20a≤500,解得:a≤25.
答:最多可购买25个足球.
-
科目: 来源: 题型:
查看答案和解析>>【题目】油电混合动力汽车是一种节油、环保的新技术汽车,某品牌油电混合动力汽车与普通汽车的相关成本数据估算如下表:

李老师计划购入一辆该品牌的油电混合动力汽车,在只考虑车价和燃油成本的情况下,李老师预估了未来10年的用车成本,发现10年中平均每年行驶总里程达到一定公里数时,选择油电混合动力汽车的成本不高于普通汽车.李老师预估的10年中平均每年行驶的总里程数至少为多少公里?
-
科目: 来源: 题型:
查看答案和解析>>【题目】“抢红包”是2015年春节十分火爆的一项网络活动,某企业有4000名职工,从中随机抽取350人,按年龄分布和“抢红包”所持态度情况进行调查,并将调查结果绘成了条形统计图和扇形统计图.

(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?
(2)如果把对“抢红包”所持态度中的“经常(抢红包)”和“偶尔(抢红包)”统称为“参与抢红包”,那么这次接受调查的职工中“参与抢红包”的人数是多少?并估计该企业“从不(抢红包)”的人数是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴与G,连OB、OC.

(1)判断△AOG的形状,并予以证明;
(2)若点B、C关于y轴对称,求证:AO⊥BO;
(3)在(2)的条件下,如图2,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B的坐标为(3,1),求点M的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算中正确的是( )
A. (a+b)2=a2+b2B. a2a3=a5C. a8÷a2=a2D. a2+a3=a5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,反比例函数
的图象和矩形ABCD在第一象限,AD平行于
轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)直接写出B、C、D三点的坐标.
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
相关试题