【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( ) ![]()
A.![]()
B.2
C.![]()
D.![]()
参考答案:
【答案】B
【解析】解:∵∠ABC=90°, ∴∠ABP+∠PBC=90°,
∵∠PAB=∠PBC,
∴∠BAP+∠ABP=90°,
∴∠APB=90°,
∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,![]()
此时PC最小,
在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,
∴OC=
=5,
∴PC=OC﹣OP=5﹣3=2.
∴PC最小值为2.
故选B.
【考点精析】关于本题考查的圆周角定理和点和圆的三种位置关系,需要了解顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】从下列图形中,不是轴对称图形的是( )
A.平行四边形B.半圆性C.环形D.圆
-
科目: 来源: 题型:
查看答案和解析>>【题目】共享单车作为一种低碳、时尚、绿色的出行方式,它俨然成为市民出行的“新宠”.某公司准备安装A款共享单车,完成5760辆该款共享单车投入市场运营的计划.由于抽调不出足够的熟练工人完成安装,公司准备招聘一批新工人,将他们培训到能独立进行安装后上岗。生产开始后发现:4名熟练工人和5名新工人每天共安装88辆共享单车;2名熟练工人每天安装的共享单车数与3名新工人每天安装的共享单车数一样多.
(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?
(2)若公司招聘m名新工人,使得招聘的新工人和抽调的熟练工人刚好一个月(30天)完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占4%,且招聘的新工人数比抽调的熟练工人数少,求m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的信息,或可以求出一些不规则图形的面积.
(1)如图1所示,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为 .
(2)若图1中每块小长方形的面积为12cm2,四个正方形的面积和为50 cm2,试求图中所有裁剪线(虚线部分)长之和.
(3)将图2中边长为a和b的正方形拼在一起,B,C,G三点在同一条直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=16,请求出阴影部分的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在一张长12厘米,宽6厘米长方形纸中,最多可以剪( )个直径为3厘米的圆.
A.4B.8C.21D.10
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=kx+c与抛物线y=ax2+bx+c的图像都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且OA=OD.直线y=kx+c与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的是( ) ①abc>0; ②3a+b>0; ③﹣1<k<0; ④4a+2b+c<0; ⑤a+b<k.

A.①②③
B.②③⑤
C.②④⑤
D.②③④⑤ -
科目: 来源: 题型:
查看答案和解析>>【题目】周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园. 如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:
(1)图中自变量是____,因变量是______;
(2)小明家到滨海公园的路程为____ km,小明在中心书城逗留的时间为____ h;
(3)小明出发______小时后爸爸驾车出发;
(4)图中A点表示___________________________________;
(5)小明从中心书城到滨海公园的平均速度为______km/h,小明爸爸驾车的平均速度为______km/h;(补充;爸爸驾车经过______追上小明);
(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为________.

相关试题