【题目】如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
![]()
(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,∠BAC=45°,原题设其他条件不变.求证:AB=BF+EF.
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)根据等腰三角形三线合一的性质可得AD垂直平分BC,再根据线段垂直平分线上的点到线段两端点的距离相等可得BE=CE;
(2)判断出△ABF是等腰直角三角形,再根据等腰直角三角形的性质可得AF=BF,根据同角的余角相等求出∠EAF=∠CBF,然后利用“角角边”证明△AEF和△BCF全等,根据全等三角形对应边相等证明即可.
(1)∵AB=AC,点D是BC的中点,∴AD垂直平分BC,∴BE=CE;
(2)∵BF⊥AC,∠BAC=45°,∴△ABF是等腰直角三角形,∴AF=BF.
∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°.
∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF.
在△AEF和△BCF中,∵
,∴△AEF≌△BCF(ASA),∴EF=FC.
∵AC=AF+FC,AB=AC,∴AB=AF+FC=BF+EF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】国家环保局统一规定,空气质量分为5级:当空气污染指数达0—50时为1级,质量为优;51—100时为2级,质量为良;101—200时为3级,轻度污染;201—300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:

(1)本次调查共抽取了 天的空气质量检测结果,请补全条形统计图;
(2)扇形统计图中3级空气质量所对应的圆心角为 °;
(3)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,请你估计2015年该城市有多少天不适宜开展户外活动.(说明:2015年共365天)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.

(1)求证:△ABE≌△AD′F;
(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中有点B(-2,0)和y轴上的动点A(0,a),其中a>0,以点A为直角顶点在第二象限内作等腰直角三角形ABC,设点C的坐标为(c,d).

(1)当a=4时,则点C的坐标为( , );
(2)动点A在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.
(3)当a=4时,在坐标平面内是否存在点P(不与点C重合),使△PAB与△ABC全等?若存在,求出点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O为△ABC的外接圆,BC为⊙O的直径,AE为⊙O的切线,过点B作BD⊥AE于D.

(1)求证:∠DBA=∠ABC;
(2)如果BD=1,tan∠BAD=
,求⊙O的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).
(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.

相关试题