【题目】毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:
名称及图形 几何点数 层数 | 三角形数 | 正方形数 | 五边形数 | 六边形数 |
|
|
|
| |
第一层几何点数 | 1 | 1 | 1 | 1 |
第二层几何点数 | 2 | 3 | 4 | 5 |
第三层几何点数 | 3 | 5 | 7 | 9 |
… | … | … | … | … |
第六层几何点数 |
|
|
|
|
… | … | … | … | … |
第n层几何点数 |
|
|
|
|
请写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.
参考答案:
【答案】6、11、16、21、n、2n﹣1、3n﹣2、4n﹣3.
【解析】
试题分析:首先看三角形数,根据前三层的几何点数分别是1、2、3,可得第六层的几何点数是6,第n层的几何点数是n;然后看正方形数,根据前三层的几何点数分别是1=2×1﹣1、3=2×2﹣1、5=2×3﹣1,可得第六层的几何点数是2×6﹣1=11,第n层的几何点数是2n﹣1;再看五边形数,根据前三层的几何点数分别是1=3×1﹣2、2=3×2﹣2、3=3×3﹣2,可得第六层的几何点数是3×6﹣2=16,第n层的几何点数是3n﹣2;最后看六边形数,根据前三层的几何点数分别是1=4×1﹣3、5=4×2﹣3、9=4×3﹣3,可得第六层的几何点数是4×6﹣3=21,第n层的几何点数是4n﹣3,据此解答即可.
解:∵前三层三角形的几何点数分别是1、2、3,
∴第六层的几何点数是6,第n层的几何点数是n;
∵前三层正方形的几何点数分别是:1=2×1﹣1、3=2×2﹣1、5=2×3﹣1,
∴第六层的几何点数是:2×6﹣1=11,第n层的几何点数是2n﹣1;
∵前三层五边形的几何点数分别是:1=3×1﹣2、2=3×2﹣2、3=3×3﹣2,
∴第六层的几何点数是:3×6﹣2=16,第n层的几何点数是3n﹣2;
前三层六边形的几何点数分别是:1=4×1﹣3、5=4×2﹣3、9=4×3﹣3,
∴第六层的几何点数是:4×6﹣3=21,第n层的几何点数是4n﹣3.
名称及图形 几何点数 层数 | 三角形数 | 正方形数 | 五边形数 | 六边形数 |
|
|
|
| |
第一层几何点数 | 1 | 1 | 1 | 1 |
第二层几何点数 | 2 | 3 | 4 | 5 |
第三层几何点数 | 3 | 5 | 7 | 9 |
… | … | … | … | … |
第六层几何点数 | 6 | 11 | 16 | 21 |
… | … | … | … | … |
第n层几何点数 | n | 2n﹣1 | 3n﹣2 | 4n﹣3 |
故答案为:6、11、16、21、n、2n﹣1、3n﹣2、4n﹣3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.

(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若
,求⊙O的半径和线段PB的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】本学期初,我市教育部门对某中学从学生的品德、身心、学习、创新、国际、审美、信息、生活八个方面进行了综合评价,评价小组从八年级学生中选取部分学生针对“信息素养”进行测试,并将测试结果绘制成如下统计图(如图).根据图中信息,解答下列问题:

(1)本次选取参加测试的学生人数是 ;
(2)学生“信息素养”得分的中位数是 ;
(3)若把每组中各个分数用这组数据的中间值代替(如30﹣40分的中间值为35分),则参加测试的学生的平均分为 分.
-
科目: 来源: 题型:
查看答案和解析>>【题目】E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是( )
A、对角线相等
B、一组对边平行而另一组对边不平行
C、对角线互相垂直
D、对角线互相平分
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙三地的海拔高度分别为20米、-5米、和-10米,那么最高的地方比最低的地方高 米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,A(1,3),B(2,4),C(3,5),D(4,6)其中不与E(2,-3)在同一个函数图像上的一个点是( )
A. 点A B. 点B C. 点C D. 点D
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,点D为AC上一点,且BD=BC.将△BCD沿直线BD折叠后,点C落在AB上的点E处,若AE=DE,则∠A的度数为 .

相关试题