【题目】如图,A,B,C,D为矩形的四个顶点,AB=16 cm,BC=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P运动到点B停止时,点Q也随之停止运动.问几秒时点P和点Q的距离是10 cm?
![]()
参考答案:
【答案】P,Q两点从出发开始到
s或
s时,点P和点Q的距离是10cm.
【解析】试题分析:作PE⊥CD,垂足为E,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.
试题解析:设ts后,点P和点Q的距离是10cm,
则AP=3tcm,CQ=2tcm.
过点P作PE⊥CD于点E,
所以AD=PE=6cm,EQ=16-2t-3t=(16-5t)(cm).
在Rt△PQE中,由勾股定理PQ2=PE2+EQ2列方程,得100=62+(16-5t)2.
解这个方程,得
,
.
答:P,Q两点从出发开始到
s或
s时,点P和点Q的距离是10cm.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:
每月用气量
单价(元/m3)
不超出75m3的部分
2.5
超出75m3不超出125m3的部分
a
超出125m3的部分
a+0.25
(1)若甲用户3月份的用气量为60m3,则应缴费 元;
(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;

(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各式与A﹣B+C的值相等的是( )
A.A+(﹣B)+(﹣C)
B.A﹣(+B)﹣(+C)
C.A﹣(+B)﹣(﹣C)
D.A﹣(﹣B)﹣(﹣C) -
科目: 来源: 题型:
查看答案和解析>>【题目】若x2﹣ax+1是完全平方式,则有理数a的值为( )
A. 1 B. 2 C. ±1 D. ±2
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个多边形的内角和与外角和之比是2:1,如果这个多边形的所有内角都相等,它的每一个内角等于_________° .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,若商场每天要获利润1200元,请计算出每件衬衫应降价多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】合肥百大集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:
空调机
电冰箱
甲连锁店
200
170
乙连锁店
160
150
设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).
(1)求y关于x的函数关系式,并求出x的取值范围;
(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,才能使总利润达到最大?
相关试题