【题目】问题背景:在正方形ABCD的外侧,作△ADE和△DCF,连结AF、BE.
特例探究:如图①,若△ADE与△DCF均为等边三角形,试判断线段AF与BE的数量关系和位置关系,并说明理由;
拓展应用:如图②,在△ADE与△DCF中,AE=DF,ED=FC,且BE=4,则四边形ABFE的面积为 .
![]()
参考答案:
【答案】(1) 特例探究:AF=BE,AF⊥BE.理由见解析;(2)拓展应用:8.
【解析】
试题分析: 特例探究:易证△ADE≌△DCF,即可证明AF与BE的数量关系是:AF=BE,位置关系是:AF⊥BE;
拓展应用:首先证得△ADE≌△CDF,由全等三角形的性质可得∠DAE=∠CDF,易得△BAE≌△ADF,可得AE=AF,同特例探究可得AF⊥BE,易得四边形ABFE的面积为:
.
试题解析:特例探究:AF=BE,AF⊥BE.
∵四边形ABCD为正方形,△ADE与△DCF均为等边三角形,
∴AB=AD=CD,∠BAD=∠ADC,AE=AD=CD=DF,∠DAE=∠CDF,
∴∠BAD+∠DAE=∠ADC+∠CDF,即∠BAE=∠ADF,
在△ABE与△DAF中,
,
∴△ABE≌△DAF(SAS),
∴AF=BE,∠ABE=∠DAF,
∵∠DAF+∠BAF=90°,
∴∠ABE+∠BAF=90°,
∴AF⊥BE;
拓展应用:在△ADE与△CDF中,
∵
,
∴△ADE≌△CDF(SSS),
∴∠DAE=∠CDF,∠ADF=∠ADC+∠CDF=90°+∠CDF,∠BAE=∠BAD+∠EAD=90°+∠EAD,
∴∠ADF=∠BAE,
在△ABE与△DAF中,
,
∴△ABE≌△DAF(SAS),
∴AF=BE,∠ABE=∠DAF,
∵∠DAF+∠BAF=90°,
∴∠ABE+∠BAF=90°,
∴AF⊥BE,
∴S四边形ABFE=
=
×4×4=8.
-
科目: 来源: 题型:
查看答案和解析>>【题目】点M(1,2)关于x轴对称的点的坐标为( )
A (-1,-2) B (-1,2) C (1,-2) D (2,-1)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=35°,求∠P的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.
(1)求A、B两种型号家用净水器各购进了多少台;
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一平面内,线段AB=7,BC=3,则AC长为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】两个多边形相似的条件是( )
A.对应角相等 B.对应边相等
C.对应角相等,对应边相等 D.对应角相等,对应边成比例
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知x=2是关于x的方程x2﹣mx﹣4m2=0的一个根,求m(2m+1)的值.
相关试题